Megoldás a(z) k változóra
k=-\frac{y_{2}-y_{1}}{x_{1}-x_{2}}
x_{2}\neq x_{1}
Megoldás a(z) x_1 változóra
\left\{\begin{matrix}x_{1}=\frac{kx_{2}+y_{1}-y_{2}}{k}\text{, }&y_{2}\neq y_{1}\text{ and }k\neq 0\\x_{1}\neq x_{2}\text{, }&k=0\text{ and }y_{2}=y_{1}\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
y_{2}-y_{1}=k\left(-x_{1}+x_{2}\right)
Az egyenlet mindkét oldalát megszorozzuk a következővel: -x_{1}+x_{2}.
y_{2}-y_{1}=-kx_{1}+kx_{2}
A disztributivitás felhasználásával összeszorozzuk a következőket: k és -x_{1}+x_{2}.
-kx_{1}+kx_{2}=y_{2}-y_{1}
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(-x_{1}+x_{2}\right)k=y_{2}-y_{1}
Összevonunk minden tagot, amelyben szerepel k.
\left(x_{2}-x_{1}\right)k=y_{2}-y_{1}
Az egyenlet kanonikus alakban van.
\frac{\left(x_{2}-x_{1}\right)k}{x_{2}-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
Mindkét oldalt elosztjuk ennyivel: x_{2}-x_{1}.
k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
A(z) x_{2}-x_{1} értékkel való osztás eltünteti a(z) x_{2}-x_{1} értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}