Kiértékelés
\frac{x^{2}}{x^{2}-1}
Differenciálás x szerint
-\frac{2x}{\left(x^{2}-1\right)^{2}}
Grafikon
Megosztás
Átmásolva a vágólapra
\frac{x}{\frac{xx}{x}-\frac{1}{x}}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. Összeszorozzuk a következőket: x és \frac{x}{x}.
\frac{x}{\frac{xx-1}{x}}
Mivel \frac{xx}{x} és \frac{1}{x} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{x}{\frac{x^{2}-1}{x}}
Elvégezzük a képletben (xx-1) szereplő szorzásokat.
\frac{xx}{x^{2}-1}
x elosztása a következővel: \frac{x^{2}-1}{x}. Ezt úgy végezzük, hogy a(z) x értéket megszorozzuk a(z) \frac{x^{2}-1}{x} reciprokával.
\frac{x^{2}}{x^{2}-1}
Összeszorozzuk a következőket: x és x. Az eredmény x^{2}.
\frac{\left(x^{1}-\frac{1}{x}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-\frac{1}{x})}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Bármely két differenciálható függvény esetén a két függvény hányadosának deriváltja egyenlő a nevező szorozva a számláló deriváltjával mínusz a számláló szorozva a nevező deriváltjával, majd ez az eredmény osztva a nevező négyzetével.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{1-1}-x^{1}\left(x^{1-1}-\left(-x^{-1-1}\right)\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Egyszerűsítünk.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Összeszorozzuk a következőket: x^{1}-\frac{1}{x} és x^{0}.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-\left(x^{1}x^{0}+x^{1}x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Összeszorozzuk a következőket: x^{1} és x^{0}+x^{-2}.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+x^{1-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Azonos alapú hatványok szorzásához összeadjuk a kitevőjüket.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+\frac{1}{x}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Egyszerűsítünk.
\frac{-2\times \frac{1}{x}}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Összevonjuk az egynemű kifejezéseket.
\frac{-2\times \frac{1}{x}}{\left(x-\frac{1}{x}\right)^{2}}
Minden t tagra, t^{1}=t.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}