Megoldás a(z) x változóra
x=-\frac{4\left(1-a\right)}{1+a-a^{2}}
a\neq \frac{\sqrt{5}+1}{2}\text{ and }a\neq \frac{1-\sqrt{5}}{2}\text{ and }a\neq 1
Megoldás a(z) a változóra
a=-\frac{\sqrt{5x^{2}+8x+16}-x+4}{2x}
a=-\frac{-\sqrt{5x^{2}+8x+16}-x+4}{2x}\text{, }x\neq 0
Grafikon
Megosztás
Átmásolva a vágólapra
x=ax\left(a-1\right)+\left(a-1\right)\times 4
Az egyenlet mindkét oldalát megszorozzuk a következővel: a-1.
x=xa^{2}-ax+\left(a-1\right)\times 4
A disztributivitás felhasználásával összeszorozzuk a következőket: ax és a-1.
x=xa^{2}-ax+4a-4
A disztributivitás felhasználásával összeszorozzuk a következőket: a-1 és 4.
x-xa^{2}=-ax+4a-4
Mindkét oldalból kivonjuk a következőt: xa^{2}.
x-xa^{2}+ax=4a-4
Bővítsük az egyenlet mindkét oldalát ezzel: ax.
ax-xa^{2}+x=4a-4
Átrendezzük a tagokat.
\left(a-a^{2}+1\right)x=4a-4
Összevonunk minden tagot, amelyben szerepel x.
\left(1+a-a^{2}\right)x=4a-4
Az egyenlet kanonikus alakban van.
\frac{\left(1+a-a^{2}\right)x}{1+a-a^{2}}=\frac{4a-4}{1+a-a^{2}}
Mindkét oldalt elosztjuk ennyivel: 1-a^{2}+a.
x=\frac{4a-4}{1+a-a^{2}}
A(z) 1-a^{2}+a értékkel való osztás eltünteti a(z) 1-a^{2}+a értékkel való szorzást.
x=\frac{4\left(a-1\right)}{1+a-a^{2}}
-4+4a elosztása a következővel: 1-a^{2}+a.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}