Megoldás a(z) T változóra (complex solution)
\left\{\begin{matrix}T=-\frac{R_{200}a-n}{R_{200}\left(b+c\right)}\text{, }&b\neq -c\text{ and }R_{200}\neq 0\\T\in \mathrm{C}\text{, }&n=R_{200}a\text{ and }b=-c\text{ and }R_{200}\neq 0\end{matrix}\right,
Megoldás a(z) R_200 változóra
\left\{\begin{matrix}R_{200}=\frac{n}{Tb+Tc+a}\text{, }&n\neq 0\text{ and }a\neq -T\left(b+c\right)\\R_{200}\neq 0\text{, }&a=-T\left(b+c\right)\text{ and }n=0\end{matrix}\right,
Megoldás a(z) T változóra
\left\{\begin{matrix}T=-\frac{R_{200}a-n}{R_{200}\left(b+c\right)}\text{, }&b\neq -c\text{ and }R_{200}\neq 0\\T\in \mathrm{R}\text{, }&n=R_{200}a\text{ and }b=-c\text{ and }R_{200}\neq 0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
n=R_{200}a+bTR_{200}+cTR_{200}
Az egyenlet mindkét oldalát megszorozzuk a következővel: R_{200}.
R_{200}a+bTR_{200}+cTR_{200}=n
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
bTR_{200}+cTR_{200}=n-R_{200}a
Mindkét oldalból kivonjuk a következőt: R_{200}a.
\left(bR_{200}+cR_{200}\right)T=n-R_{200}a
Összevonunk minden tagot, amelyben szerepel T.
\left(R_{200}b+R_{200}c\right)T=n-R_{200}a
Az egyenlet kanonikus alakban van.
\frac{\left(R_{200}b+R_{200}c\right)T}{R_{200}b+R_{200}c}=\frac{n-R_{200}a}{R_{200}b+R_{200}c}
Mindkét oldalt elosztjuk ennyivel: cR_{200}+bR_{200}.
T=\frac{n-R_{200}a}{R_{200}b+R_{200}c}
A(z) cR_{200}+bR_{200} értékkel való osztás eltünteti a(z) cR_{200}+bR_{200} értékkel való szorzást.
T=\frac{n-R_{200}a}{R_{200}\left(b+c\right)}
n-R_{200}a elosztása a következővel: cR_{200}+bR_{200}.
n=R_{200}a+bTR_{200}+cTR_{200}
A változó (R_{200}) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: R_{200}.
R_{200}a+bTR_{200}+cTR_{200}=n
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(a+bT+cT\right)R_{200}=n
Összevonunk minden tagot, amelyben szerepel R_{200}.
\left(Tb+Tc+a\right)R_{200}=n
Az egyenlet kanonikus alakban van.
\frac{\left(Tb+Tc+a\right)R_{200}}{Tb+Tc+a}=\frac{n}{Tb+Tc+a}
Mindkét oldalt elosztjuk ennyivel: a+bT+Tc.
R_{200}=\frac{n}{Tb+Tc+a}
A(z) a+bT+Tc értékkel való osztás eltünteti a(z) a+bT+Tc értékkel való szorzást.
R_{200}=\frac{n}{Tb+Tc+a}\text{, }R_{200}\neq 0
A változó (R_{200}) értéke nem lehet 0.
n=R_{200}a+bTR_{200}+cTR_{200}
Az egyenlet mindkét oldalát megszorozzuk a következővel: R_{200}.
R_{200}a+bTR_{200}+cTR_{200}=n
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
bTR_{200}+cTR_{200}=n-R_{200}a
Mindkét oldalból kivonjuk a következőt: R_{200}a.
\left(bR_{200}+cR_{200}\right)T=n-R_{200}a
Összevonunk minden tagot, amelyben szerepel T.
\left(R_{200}b+R_{200}c\right)T=n-R_{200}a
Az egyenlet kanonikus alakban van.
\frac{\left(R_{200}b+R_{200}c\right)T}{R_{200}b+R_{200}c}=\frac{n-R_{200}a}{R_{200}b+R_{200}c}
Mindkét oldalt elosztjuk ennyivel: cR_{200}+bR_{200}.
T=\frac{n-R_{200}a}{R_{200}b+R_{200}c}
A(z) cR_{200}+bR_{200} értékkel való osztás eltünteti a(z) cR_{200}+bR_{200} értékkel való szorzást.
T=\frac{n-R_{200}a}{R_{200}\left(b+c\right)}
n-R_{200}a elosztása a következővel: cR_{200}+bR_{200}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}