Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

-4\left(2x^{3}-3x^{1}\right)^{-4-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}-3x^{1})
Ha az F függvény az f\left(u\right) és az u=g\left(x\right) differenciálható függvények kompozíciója, azaz F\left(x\right)=f\left(g\left(x\right)\right), akkor F deriváltja az f függvény u szerinti deriváltjának és a g függvény x szerinti deriváltjának a szorzata, vagyis \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-4\left(2x^{3}-3x^{1}\right)^{-5}\left(3\times 2x^{3-1}-3x^{1-1}\right)
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\left(2x^{3}-3x^{1}\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Egyszerűsítünk.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Minden t tagra, t^{1}=t.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\times 1\right)
Az 0 kivételével minden t tagra, t^{0}=1.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\right)
Minden t tagra, t\times 1=t és 1t=t.