Megoldás a(z) a változóra (complex solution)
\left\{\begin{matrix}a=\frac{2y}{-x^{2}\cos(2x)+2yx^{2}-x^{2}+2}\text{, }&y\neq 0\text{ and }y\neq \frac{\cos(2x)+1-\frac{2}{x^{2}}}{2}\text{ and }x\neq 0\\a\neq 0\text{, }&y=0\text{ and }\frac{\cos(2x)-\frac{2}{x^{2}}}{2}=-\frac{1}{2}\text{ and }x\neq 0\end{matrix}\right,
Megoldás a(z) a változóra
\left\{\begin{matrix}a=\frac{y}{-\left(x\cos(x)\right)^{2}+yx^{2}+1}\text{, }&y\neq 0\text{ and }y\neq \left(\cos(x)\right)^{2}-\frac{1}{x^{2}}\text{ and }x\neq 0\\a\neq 0\text{, }&y=0\text{ and }0=\left(\cos(x)\right)^{2}-\frac{1}{x^{2}}\text{ and }x\neq 0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
A változó (a) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Mindkét oldalból kivonjuk a következőt: ax^{2}\left(\cos(x)\right)^{2}.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Bővítsük az egyenlet mindkét oldalát ezzel: y. Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Összevonunk minden tagot, amelyben szerepel a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Az egyenlet kanonikus alakban van.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Mindkét oldalt elosztjuk ennyivel: 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
A(z) 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} értékkel való osztás eltünteti a(z) 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} értékkel való szorzást.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
y elosztása a következővel: 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
A változó (a) értéke nem lehet 0.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
A változó (a) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Mindkét oldalból kivonjuk a következőt: ax^{2}\left(\cos(x)\right)^{2}.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Bővítsük az egyenlet mindkét oldalát ezzel: y. Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Összevonunk minden tagot, amelyben szerepel a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
Az egyenlet kanonikus alakban van.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Mindkét oldalt elosztjuk ennyivel: 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
A(z) 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} értékkel való osztás eltünteti a(z) 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} értékkel való szorzást.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
y elosztása a következővel: 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
A változó (a) értéke nem lehet 0.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}