Kiértékelés
\frac{\left(3m-1\right)\left(m+1\right)\left(3m+2\right)}{6m\left(m-2n\right)}
Zárójel felbontása
-\frac{9m^{3}+12m^{2}+m-2}{6m\left(2n-m\right)}
Megosztás
Átmásolva a vágólapra
\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Szorzattá alakítjuk a(z) 3m^{2}-6mn kifejezést. Szorzattá alakítjuk a(z) 6m-12n kifejezést.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. 3m\left(m-2n\right) és 6\left(m-2n\right) legkisebb közös többszöröse 6m\left(m-2n\right). Összeszorozzuk a következőket: \frac{9m^{2}-1}{3m\left(m-2n\right)} és \frac{2}{2}. Összeszorozzuk a következőket: \frac{9m^{2}-6m+1}{6\left(m-2n\right)} és \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Mivel \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} és \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Elvégezzük a képletben (2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m) szereplő szorzásokat.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Összevonjuk a kifejezésben (18m^{2}-2+9m^{3}-6m^{2}+m) szereplő egynemű tagokat.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Kifejtjük a következőt: 6m\left(m-2n\right).
\frac{9m^{2}-1}{3m\left(m-2n\right)}+\frac{9m^{2}-6m+1}{6\left(m-2n\right)}
Szorzattá alakítjuk a(z) 3m^{2}-6mn kifejezést. Szorzattá alakítjuk a(z) 6m-12n kifejezést.
\frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)}+\frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. 3m\left(m-2n\right) és 6\left(m-2n\right) legkisebb közös többszöröse 6m\left(m-2n\right). Összeszorozzuk a következőket: \frac{9m^{2}-1}{3m\left(m-2n\right)} és \frac{2}{2}. Összeszorozzuk a következőket: \frac{9m^{2}-6m+1}{6\left(m-2n\right)} és \frac{m}{m}.
\frac{2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)}
Mivel \frac{2\left(9m^{2}-1\right)}{6m\left(m-2n\right)} és \frac{\left(9m^{2}-6m+1\right)m}{6m\left(m-2n\right)} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{18m^{2}-2+9m^{3}-6m^{2}+m}{6m\left(m-2n\right)}
Elvégezzük a képletben (2\left(9m^{2}-1\right)+\left(9m^{2}-6m+1\right)m) szereplő szorzásokat.
\frac{12m^{2}-2+9m^{3}+m}{6m\left(m-2n\right)}
Összevonjuk a kifejezésben (18m^{2}-2+9m^{3}-6m^{2}+m) szereplő egynemű tagokat.
\frac{12m^{2}-2+9m^{3}+m}{6m^{2}-12mn}
Kifejtjük a következőt: 6m\left(m-2n\right).
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}