Kiértékelés
\frac{1}{2nm^{2}}
Differenciálás m szerint
-\frac{1}{nm^{3}}
Megosztás
Átmásolva a vágólapra
\frac{6^{1}m^{2}n^{4}}{12^{1}m^{4}n^{5}}
A kifejezés egyszerűsítéséhez a kitevőkre vonatkozó szabályokat használjuk.
\frac{6^{1}}{12^{1}}m^{2-4}n^{4-5}
Azonos alapú hatványokat úgy osztunk, hogy kivonjuk a nevező kitevőjét a számláló kitevőjéből.
\frac{6^{1}}{12^{1}}m^{-2}n^{4-5}
4 kivonása a következőből: 2.
\frac{6^{1}}{12^{1}}\times \frac{1}{m^{2}}\times \frac{1}{n}
5 kivonása a következőből: 4.
\frac{1}{2}\times \frac{1}{m^{2}}\times \frac{1}{n}
A törtet (\frac{6}{12}) leegyszerűsítjük 6 kivonásával és kiejtésével.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{6n^{4}}{12n^{5}}m^{2-4})
Azonos alapú hatványokat úgy osztunk, hogy kivonjuk a nevező kitevőjét a számláló kitevőjéből.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{1}{2n}m^{-2})
Elvégezzük a számolást.
-2\times \frac{1}{2n}m^{-2-1}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\left(-\frac{1}{n}\right)m^{-3}
Elvégezzük a számolást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}