Kiértékelés
\frac{2\sqrt{30}}{39}+\frac{4\sqrt{3}}{13}+\frac{5\sqrt{5}}{13}+\frac{15\sqrt{2}}{13}\approx 3,305633098
Megosztás
Átmásolva a vágólapra
\frac{6\times 2\sqrt{3}+2\sqrt{30}+15\sqrt{18}+5\sqrt{45}}{9\sqrt{36}-\sqrt{225}}
Szorzattá alakítjuk a(z) 12=2^{2}\times 3 kifejezést. Átalakítjuk a szorzat (\sqrt{2^{2}\times 3}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{2^{2}}\sqrt{3}. Négyzetgyököt vonunk a következőből: 2^{2}.
\frac{12\sqrt{3}+2\sqrt{30}+15\sqrt{18}+5\sqrt{45}}{9\sqrt{36}-\sqrt{225}}
Összeszorozzuk a következőket: 6 és 2. Az eredmény 12.
\frac{12\sqrt{3}+2\sqrt{30}+15\times 3\sqrt{2}+5\sqrt{45}}{9\sqrt{36}-\sqrt{225}}
Szorzattá alakítjuk a(z) 18=3^{2}\times 2 kifejezést. Átalakítjuk a szorzat (\sqrt{3^{2}\times 2}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{3^{2}}\sqrt{2}. Négyzetgyököt vonunk a következőből: 3^{2}.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+5\sqrt{45}}{9\sqrt{36}-\sqrt{225}}
Összeszorozzuk a következőket: 15 és 3. Az eredmény 45.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+5\times 3\sqrt{5}}{9\sqrt{36}-\sqrt{225}}
Szorzattá alakítjuk a(z) 45=3^{2}\times 5 kifejezést. Átalakítjuk a szorzat (\sqrt{3^{2}\times 5}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{3^{2}}\sqrt{5}. Négyzetgyököt vonunk a következőből: 3^{2}.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+15\sqrt{5}}{9\sqrt{36}-\sqrt{225}}
Összeszorozzuk a következőket: 5 és 3. Az eredmény 15.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+15\sqrt{5}}{9\times 6-\sqrt{225}}
Kiszámoljuk a(z) 36 négyzetgyökét. Az eredmény 6.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+15\sqrt{5}}{54-\sqrt{225}}
Összeszorozzuk a következőket: 9 és 6. Az eredmény 54.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+15\sqrt{5}}{54-15}
Kiszámoljuk a(z) 225 négyzetgyökét. Az eredmény 15.
\frac{12\sqrt{3}+2\sqrt{30}+45\sqrt{2}+15\sqrt{5}}{39}
Kivonjuk a(z) 15 értékből a(z) 54 értéket. Az eredmény 39.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}