Kiértékelés
4\sqrt{6}\approx 9,797958971
Megosztás
Átmásolva a vágólapra
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Gyöktelenítjük a tört (\frac{4\sqrt{3}}{2-\sqrt{2}}) nevezőjét úgy, hogy megszorozzuk a számlálót és a nevezőt ennyivel: 2+\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Vegyük a következőt: \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). A szorzás négyzetre emelt értékek különbségévé alakítható ezzel a szabállyal: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Négyzetre emeljük a következőt: 2. Négyzetre emeljük a következőt: \sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kivonjuk a(z) 2 értékből a(z) 4 értéket. Az eredmény 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Szorzattá alakítjuk a(z) 18=3^{2}\times 2 kifejezést. Átalakítjuk a szorzat (\sqrt{3^{2}\times 2}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{3^{2}}\sqrt{2}. Négyzetgyököt vonunk a következőből: 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
Gyöktelenítjük a tört (\frac{30}{4\sqrt{3}-3\sqrt{2}}) nevezőjét úgy, hogy megszorozzuk a számlálót és a nevezőt ennyivel: 4\sqrt{3}+3\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Vegyük a következőt: \left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right). A szorzás négyzetre emelt értékek különbségévé alakítható ezzel a szabállyal: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kifejtjük a következőt: \left(4\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kiszámoljuk a(z) 4 érték 2. hatványát. Az eredmény 16.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{3} négyzete 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Összeszorozzuk a következőket: 16 és 3. Az eredmény 48.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kifejtjük a következőt: \left(-3\sqrt{2}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kiszámoljuk a(z) -3 érték 2. hatványát. Az eredmény 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{2} négyzete 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
Összeszorozzuk a következőket: 9 és 2. Az eredmény 18.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kivonjuk a(z) 18 értékből a(z) 48 értéket. Az eredmény 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
Kiejtjük ezt a két értéket: 30 és 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
4\sqrt{3}+3\sqrt{2} ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
Szorzattá alakítjuk a(z) 18=3^{2}\times 2 kifejezést. Átalakítjuk a szorzat (\sqrt{3^{2}\times 2}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{3^{2}}\sqrt{2}. Négyzetgyököt vonunk a következőből: 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
Szorzattá alakítjuk a(z) 12=2^{2}\times 3 kifejezést. Átalakítjuk a szorzat (\sqrt{2^{2}\times 3}) négyzetgyökét e négyzetgyökök szorzatává: \sqrt{2^{2}}\sqrt{3}. Négyzetgyököt vonunk a következőből: 2^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
Gyöktelenítjük a tört (\frac{3\sqrt{2}}{3-2\sqrt{3}}) nevezőjét úgy, hogy megszorozzuk a számlálót és a nevezőt ennyivel: 3+2\sqrt{3}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
Vegyük a következőt: \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). A szorzás négyzetre emelt értékek különbségévé alakítható ezzel a szabállyal: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
Kiszámoljuk a(z) 3 érték 2. hatványát. Az eredmény 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Kifejtjük a következőt: \left(-2\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
Kiszámoljuk a(z) -2 érték 2. hatványát. Az eredmény 4.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
\sqrt{3} négyzete 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
Összeszorozzuk a következőket: 4 és 3. Az eredmény 12.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
Kivonjuk a(z) 12 értékből a(z) 9 értéket. Az eredmény -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
Kiejtjük ezt a két értéket: -3 és -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
-\sqrt{2}\left(3+2\sqrt{3}\right) ellentettje \sqrt{2}\left(3+2\sqrt{3}\right).
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. Összeszorozzuk a következőket: -4\sqrt{3}-3\sqrt{2} és \frac{2}{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Mivel \frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} és \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Elvégezzük a képletben (4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)) szereplő szorzásokat.
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Elvégezzük a képletben (8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}) szereplő számításokat.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Elosztjuk a kifejezés (4\sqrt{6}-6\sqrt{2}) minden tagját a(z) 2 értékkel. Az eredmény 2\sqrt{6}-3\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
A disztributivitás felhasználásával összeszorozzuk a következőket: \sqrt{2} és 3+2\sqrt{3}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
\sqrt{2} és \sqrt{3} megszorozzuk a négyzetgyökér alatti számokat.
2\sqrt{6}+2\sqrt{6}
Összevonjuk a következőket: -3\sqrt{2} és 3\sqrt{2}. Az eredmény 0.
4\sqrt{6}
Összevonjuk a következőket: 2\sqrt{6} és 2\sqrt{6}. Az eredmény 4\sqrt{6}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}