Kiértékelés
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Szorzattá alakítás
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Megosztás
Átmásolva a vágólapra
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. \alpha +1 és \beta +1 legkisebb közös többszöröse \left(\alpha +1\right)\left(\beta +1\right). Összeszorozzuk a következőket: \frac{3\beta }{\alpha +1} és \frac{\beta +1}{\beta +1}. Összeszorozzuk a következőket: \frac{3\alpha }{\beta +1} és \frac{\alpha +1}{\alpha +1}.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Mivel \frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} és \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
Elvégezzük a képletben (3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)) szereplő szorzásokat.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
Kifejtjük a következőt: \left(\alpha +1\right)\left(\beta +1\right).
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}