Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

2=3x+3x^{2}\left(-\frac{1}{3}\right)
A változó (x) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk 3x^{2},x,3 legkisebb közös többszörösével, azaz ennyivel: 3x^{2}.
2=3x-x^{2}
Összeszorozzuk a következőket: 3 és -\frac{1}{3}. Az eredmény -1.
3x-x^{2}=2
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
3x-x^{2}-2=0
Mindkét oldalból kivonjuk a következőt: 2.
-x^{2}+3x-2=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=3 ab=-\left(-2\right)=2
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk -x^{2}+ax+bx-2 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
a=2 b=1
Mivel ab pozitív, a és b azonos aláírására. Mivel a+b pozitív, a és b egyaránt pozitív. Az egyetlen ilyen pár a rendszermegoldás.
\left(-x^{2}+2x\right)+\left(x-2\right)
Átírjuk az értéket (-x^{2}+3x-2) \left(-x^{2}+2x\right)+\left(x-2\right) alakban.
-x\left(x-2\right)+x-2
Emelje ki a(z) -x elemet a(z) -x^{2}+2x kifejezésből.
\left(x-2\right)\left(-x+1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-2 általános kifejezést a zárójelből.
x=2 x=1
Az egyenletmegoldások kereséséhez, a x-2=0 és a -x+1=0.
2=3x+3x^{2}\left(-\frac{1}{3}\right)
A változó (x) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk 3x^{2},x,3 legkisebb közös többszörösével, azaz ennyivel: 3x^{2}.
2=3x-x^{2}
Összeszorozzuk a következőket: 3 és -\frac{1}{3}. Az eredmény -1.
3x-x^{2}=2
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
3x-x^{2}-2=0
Mindkét oldalból kivonjuk a következőt: 2.
-x^{2}+3x-2=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) -1 értéket a-ba, a(z) 3 értéket b-be és a(z) -2 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Négyzetre emeljük a következőt: 3.
x=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Összeszorozzuk a következőket: -4 és -1.
x=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
Összeszorozzuk a következőket: 4 és -2.
x=\frac{-3±\sqrt{1}}{2\left(-1\right)}
Összeadjuk a következőket: 9 és -8.
x=\frac{-3±1}{2\left(-1\right)}
Négyzetgyököt vonunk a következőből: 1.
x=\frac{-3±1}{-2}
Összeszorozzuk a következőket: 2 és -1.
x=-\frac{2}{-2}
Megoldjuk az egyenletet (x=\frac{-3±1}{-2}). ± előjele pozitív. Összeadjuk a következőket: -3 és 1.
x=1
-2 elosztása a következővel: -2.
x=-\frac{4}{-2}
Megoldjuk az egyenletet (x=\frac{-3±1}{-2}). ± előjele negatív. 1 kivonása a következőből: -3.
x=2
-4 elosztása a következővel: -2.
x=1 x=2
Megoldottuk az egyenletet.
2=3x+3x^{2}\left(-\frac{1}{3}\right)
A változó (x) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk 3x^{2},x,3 legkisebb közös többszörösével, azaz ennyivel: 3x^{2}.
2=3x-x^{2}
Összeszorozzuk a következőket: 3 és -\frac{1}{3}. Az eredmény -1.
3x-x^{2}=2
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-x^{2}+3x=2
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
\frac{-x^{2}+3x}{-1}=\frac{2}{-1}
Mindkét oldalt elosztjuk ennyivel: -1.
x^{2}+\frac{3}{-1}x=\frac{2}{-1}
A(z) -1 értékkel való osztás eltünteti a(z) -1 értékkel való szorzást.
x^{2}-3x=\frac{2}{-1}
3 elosztása a következővel: -1.
x^{2}-3x=-2
2 elosztása a következővel: -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Elosztjuk a(z) -3 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -\frac{3}{2}. Ezután hozzáadjuk -\frac{3}{2} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
A(z) -\frac{3}{2} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Összeadjuk a következőket: -2 és \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Tényezőkre x^{2}-3x+\frac{9}{4}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Egyszerűsítünk.
x=2 x=1
Hozzáadjuk az egyenlet mindkét oldalához a következőt: \frac{3}{2}.