Megoldás a(z) a változóra
a=-\frac{b+2}{2^{x}}
b\neq -2
Megoldás a(z) b változóra
b=-\left(a\times 2^{x}+2\right)
a\neq 0
Grafikon
Megosztás
Átmásolva a vágólapra
2+b=-a\times 2^{x}
A változó (a) értéke nem lehet 0, mert nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk a következővel: a.
-a\times 2^{x}=2+b
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
-a\times 2^{x}=b+2
Átrendezzük a tagokat.
\left(-2^{x}\right)a=b+2
Az egyenlet kanonikus alakban van.
\frac{\left(-2^{x}\right)a}{-2^{x}}=\frac{b+2}{-2^{x}}
Mindkét oldalt elosztjuk ennyivel: -2^{x}.
a=\frac{b+2}{-2^{x}}
A(z) -2^{x} értékkel való osztás eltünteti a(z) -2^{x} értékkel való szorzást.
a=-\frac{b+2}{2^{x}}
2+b elosztása a következővel: -2^{x}.
a=-\frac{b+2}{2^{x}}\text{, }a\neq 0
A változó (a) értéke nem lehet 0.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}