Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. Összeszorozzuk a következőket: 3 és \frac{x-3}{x-3}.
\frac{10-3\left(x-3\right)}{x-3}
Mivel \frac{10}{x-3} és \frac{3\left(x-3\right)}{x-3} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{10-3x+9}{x-3}
Elvégezzük a képletben (10-3\left(x-3\right)) szereplő szorzásokat.
\frac{19-3x}{x-3}
Összevonjuk a kifejezésben (10-3x+9) szereplő egynemű tagokat.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10}{x-3}-\frac{3\left(x-3\right)}{x-3})
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. Összeszorozzuk a következőket: 3 és \frac{x-3}{x-3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3\left(x-3\right)}{x-3})
Mivel \frac{10}{x-3} és \frac{3\left(x-3\right)}{x-3} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10-3x+9}{x-3})
Elvégezzük a képletben (10-3\left(x-3\right)) szereplő szorzásokat.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{19-3x}{x-3})
Összevonjuk a kifejezésben (10-3x+9) szereplő egynemű tagokat.
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+19)-\left(-3x^{1}+19\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
Bármely két differenciálható függvény esetén a két függvény hányadosának deriváltja egyenlő a nevező szorozva a számláló deriváltjával mínusz a számláló szorozva a nevező deriváltjával, majd ez az eredmény osztva a nevező négyzetével.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+19\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\frac{\left(x^{1}-3\right)\left(-3\right)x^{0}-\left(-3x^{1}+19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Elvégezzük a számolást.
\frac{x^{1}\left(-3\right)x^{0}-3\left(-3\right)x^{0}-\left(-3x^{1}x^{0}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Felbontjuk a zárójelet a disztributivitás felhasználásával.
\frac{-3x^{1}-3\left(-3\right)x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Azonos alapú hatványok szorzásához összeadjuk a kitevőjüket.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}+19x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Elvégezzük a számolást.
\frac{-3x^{1}+9x^{0}-\left(-3x^{1}\right)-19x^{0}}{\left(x^{1}-3\right)^{2}}
Megszüntetjük a felesleges zárójeleket.
\frac{\left(-3-\left(-3\right)\right)x^{1}+\left(9-19\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Összevonjuk az egynemű kifejezéseket.
\frac{-10x^{0}}{\left(x^{1}-3\right)^{2}}
-3 kivonása ebből: -3, valamint 19 kivonása ebből: 9.
\frac{-10x^{0}}{\left(x-3\right)^{2}}
Minden t tagra, t^{1}=t.
\frac{-10}{\left(x-3\right)^{2}}
Az 0 kivételével minden t tagra, t^{0}=1.