Megoldás a(z) x változóra
x=-4
x=1
Grafikon
Megosztás
Átmásolva a vágólapra
x-2+\left(x+2\right)x=2
A változó (x) értéke nem lehet ezen értékek egyike sem: -2,2. Nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk x+2,x-2,x^{2}-4 legkisebb közös többszörösével, azaz ennyivel: \left(x-2\right)\left(x+2\right).
x-2+x^{2}+2x=2
A disztributivitás felhasználásával összeszorozzuk a következőket: x+2 és x.
3x-2+x^{2}=2
Összevonjuk a következőket: x és 2x. Az eredmény 3x.
3x-2+x^{2}-2=0
Mindkét oldalból kivonjuk a következőt: 2.
3x-4+x^{2}=0
Kivonjuk a(z) 2 értékből a(z) -2 értéket. Az eredmény -4.
x^{2}+3x-4=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=3 ab=-4
Az egyenlet megoldásához x^{2}+3x-4 a képlet használatával x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,4 -2,2
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b pozitív, a pozitív szám nagyobb abszolút értéket tartalmaz, mint a negatív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -4.
-1+4=3 -2+2=0
Kiszámítjuk az egyes párok összegét.
a=-1 b=4
A megoldás az a pár, amelynek összege 3.
\left(x-1\right)\left(x+4\right)
Az eredményül kapott értékeket használva átírjuk a tényezőkre bontott \left(x+a\right)\left(x+b\right) kifejezést.
x=1 x=-4
Az egyenletmegoldások kereséséhez, a x-1=0 és a x+4=0.
x-2+\left(x+2\right)x=2
A változó (x) értéke nem lehet ezen értékek egyike sem: -2,2. Nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk x+2,x-2,x^{2}-4 legkisebb közös többszörösével, azaz ennyivel: \left(x-2\right)\left(x+2\right).
x-2+x^{2}+2x=2
A disztributivitás felhasználásával összeszorozzuk a következőket: x+2 és x.
3x-2+x^{2}=2
Összevonjuk a következőket: x és 2x. Az eredmény 3x.
3x-2+x^{2}-2=0
Mindkét oldalból kivonjuk a következőt: 2.
3x-4+x^{2}=0
Kivonjuk a(z) 2 értékből a(z) -2 értéket. Az eredmény -4.
x^{2}+3x-4=0
Átrendezzük a polinomot, kanonikus formára hozva azt. A tagokat sorba rendezzük a legnagyobb kitevőjűtől a legkisebb kitevőjűig.
a+b=3 ab=1\left(-4\right)=-4
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk x^{2}+ax+bx-4 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
-1,4 -2,2
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b pozitív, a pozitív szám nagyobb abszolút értéket tartalmaz, mint a negatív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -4.
-1+4=3 -2+2=0
Kiszámítjuk az egyes párok összegét.
a=-1 b=4
A megoldás az a pár, amelynek összege 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Átírjuk az értéket (x^{2}+3x-4) \left(x^{2}-x\right)+\left(4x-4\right) alakban.
x\left(x-1\right)+4\left(x-1\right)
A x a második csoportban lévő első és 4 faktort.
\left(x-1\right)\left(x+4\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-1 általános kifejezést a zárójelből.
x=1 x=-4
Az egyenletmegoldások kereséséhez, a x-1=0 és a x+4=0.
x-2+\left(x+2\right)x=2
A változó (x) értéke nem lehet ezen értékek egyike sem: -2,2. Nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk x+2,x-2,x^{2}-4 legkisebb közös többszörösével, azaz ennyivel: \left(x-2\right)\left(x+2\right).
x-2+x^{2}+2x=2
A disztributivitás felhasználásával összeszorozzuk a következőket: x+2 és x.
3x-2+x^{2}=2
Összevonjuk a következőket: x és 2x. Az eredmény 3x.
3x-2+x^{2}-2=0
Mindkét oldalból kivonjuk a következőt: 2.
3x-4+x^{2}=0
Kivonjuk a(z) 2 értékből a(z) -2 értéket. Az eredmény -4.
x^{2}+3x-4=0
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 3 értéket b-be és a(z) -4 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Négyzetre emeljük a következőt: 3.
x=\frac{-3±\sqrt{9+16}}{2}
Összeszorozzuk a következőket: -4 és -4.
x=\frac{-3±\sqrt{25}}{2}
Összeadjuk a következőket: 9 és 16.
x=\frac{-3±5}{2}
Négyzetgyököt vonunk a következőből: 25.
x=\frac{2}{2}
Megoldjuk az egyenletet (x=\frac{-3±5}{2}). ± előjele pozitív. Összeadjuk a következőket: -3 és 5.
x=1
2 elosztása a következővel: 2.
x=-\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{-3±5}{2}). ± előjele negatív. 5 kivonása a következőből: -3.
x=-4
-8 elosztása a következővel: 2.
x=1 x=-4
Megoldottuk az egyenletet.
x-2+\left(x+2\right)x=2
A változó (x) értéke nem lehet ezen értékek egyike sem: -2,2. Nincs definiálva a nullával való osztás. Az egyenlet mindkét oldalát megszorozzuk x+2,x-2,x^{2}-4 legkisebb közös többszörösével, azaz ennyivel: \left(x-2\right)\left(x+2\right).
x-2+x^{2}+2x=2
A disztributivitás felhasználásával összeszorozzuk a következőket: x+2 és x.
3x-2+x^{2}=2
Összevonjuk a következőket: x és 2x. Az eredmény 3x.
3x+x^{2}=2+2
Bővítsük az egyenlet mindkét oldalát ezzel: 2.
3x+x^{2}=4
Összeadjuk a következőket: 2 és 2. Az eredmény 4.
x^{2}+3x=4
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Elosztjuk a(z) 3 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye \frac{3}{2}. Ezután hozzáadjuk \frac{3}{2} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
A(z) \frac{3}{2} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Összeadjuk a következőket: 4 és \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Tényezőkre x^{2}+3x+\frac{9}{4}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Egyszerűsítünk.
x=1 x=-4
Kivonjuk az egyenlet mindkét oldalából a következőt: \frac{3}{2}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}