Ugrás a tartalomra
Ellenőrzés
igaz
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\frac{1}{362880}+\frac{1}{10!}+\frac{1}{11!}=\frac{122}{11!}
9 faktoriálisa 362880.
\frac{1}{362880}+\frac{1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
10 faktoriálisa 3628800.
\frac{10}{3628800}+\frac{1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
362880 és 3628800 legkisebb közös többszöröse 3628800. Átalakítjuk a számokat (\frac{1}{362880} és \frac{1}{3628800}) törtekké, amelyek nevezője 3628800.
\frac{10+1}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Mivel \frac{10}{3628800} és \frac{1}{3628800} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{11}{3628800}+\frac{1}{11!}=\frac{122}{11!}
Összeadjuk a következőket: 10 és 1. Az eredmény 11.
\frac{11}{3628800}+\frac{1}{39916800}=\frac{122}{11!}
11 faktoriálisa 39916800.
\frac{121}{39916800}+\frac{1}{39916800}=\frac{122}{11!}
3628800 és 39916800 legkisebb közös többszöröse 39916800. Átalakítjuk a számokat (\frac{11}{3628800} és \frac{1}{39916800}) törtekké, amelyek nevezője 39916800.
\frac{121+1}{39916800}=\frac{122}{11!}
Mivel \frac{121}{39916800} és \frac{1}{39916800} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{122}{39916800}=\frac{122}{11!}
Összeadjuk a következőket: 121 és 1. Az eredmény 122.
\frac{61}{19958400}=\frac{122}{11!}
A törtet (\frac{122}{39916800}) leegyszerűsítjük 2 kivonásával és kiejtésével.
\frac{61}{19958400}=\frac{122}{39916800}
11 faktoriálisa 39916800.
\frac{61}{19958400}=\frac{61}{19958400}
A törtet (\frac{122}{39916800}) leegyszerűsítjük 2 kivonásával és kiejtésével.
\text{true}
Összehasonlítás: \frac{61}{19958400} és \frac{61}{19958400}.