Kiértékelés
\frac{x^{2}+x+7}{\left(x+4\right)\left(x^{2}+3\right)}
Differenciálás x szerint
-\frac{x^{4}+2x^{3}+22x^{2}+32x+9}{\left(\left(x+4\right)\left(x^{2}+3\right)\right)^{2}}
Grafikon
Teszt
Polynomial
5 ehhez hasonló probléma:
\frac { 1 } { ( x ^ { 2 } + 3 ) } + \frac { 1 } { ( x + 4 ) } =
Megosztás
Átmásolva a vágólapra
\frac{x+4}{\left(x+4\right)\left(x^{2}+3\right)}+\frac{x^{2}+3}{\left(x+4\right)\left(x^{2}+3\right)}
Kifejezések összeadásához vagy kivonásához bontsa ki őket, hogy ugyanaz legyen a nevezőjük. x^{2}+3 és x+4 legkisebb közös többszöröse \left(x+4\right)\left(x^{2}+3\right). Összeszorozzuk a következőket: \frac{1}{x^{2}+3} és \frac{x+4}{x+4}. Összeszorozzuk a következőket: \frac{1}{x+4} és \frac{x^{2}+3}{x^{2}+3}.
\frac{x+4+x^{2}+3}{\left(x+4\right)\left(x^{2}+3\right)}
Mivel \frac{x+4}{\left(x+4\right)\left(x^{2}+3\right)} és \frac{x^{2}+3}{\left(x+4\right)\left(x^{2}+3\right)} nevezője ugyanaz, az összeadásukhoz összeadjuk a számlálójukat.
\frac{x+7+x^{2}}{\left(x+4\right)\left(x^{2}+3\right)}
Összevonjuk a kifejezésben (x+4+x^{2}+3) szereplő egynemű tagokat.
\frac{x+7+x^{2}}{x^{3}+4x^{2}+3x+12}
Kifejtjük a következőt: \left(x+4\right)\left(x^{2}+3\right).
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}