Ugrás a tartalomra
Differenciálás x szerint
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

\frac{\left(2x^{2}-13x^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1})-\left(-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-13x^{1}+21)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Bármely két differenciálható függvény esetén a két függvény hányadosának deriváltja egyenlő a nevező szorozva a számláló deriváltjával mínusz a számláló szorozva a nevező deriváltjával, majd ez az eredmény osztva a nevező négyzetével.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{1-1}-\left(-2x^{1}\left(2\times 2x^{2-1}-13x^{1-1}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egyszerűsítünk.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összeszorozzuk a következőket: 2x^{2}-13x^{1}+21 és -2x^{0}.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\times 4x^{1}-2x^{1}\left(-13\right)x^{0}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összeszorozzuk a következőket: -2x^{1} és 4x^{1}-13x^{0}.
\frac{2\left(-2\right)x^{2}-13\left(-2\right)x^{1}+21\left(-2\right)x^{0}-\left(-2\times 4x^{1+1}-2\left(-13\right)x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Azonos alapú hatványok szorzásához összeadjuk a kitevőjüket.
\frac{-4x^{2}+26x^{1}-42x^{0}-\left(-8x^{2}+26x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egyszerűsítünk.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összevonjuk az egynemű kifejezéseket.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x+21\right)^{2}}
Minden t tagra, t^{1}=t.
\frac{4x^{2}-42}{\left(2x^{2}-13x+21\right)^{2}}
Az 0 kivételével minden t tagra, t^{0}=1.