Differenciálás x szerint
\frac{2\left(2x^{2}-21\right)}{\left(\left(x-3\right)\left(2x-7\right)\right)^{2}}
Kiértékelés
-\frac{2x}{\left(x-3\right)\left(2x-7\right)}
Grafikon
Megosztás
Átmásolva a vágólapra
\frac{\left(2x^{2}-13x^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1})-\left(-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-13x^{1}+21)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Bármely két differenciálható függvény esetén a két függvény hányadosának deriváltja egyenlő a nevező szorozva a számláló deriváltjával mínusz a számláló szorozva a nevező deriváltjával, majd ez az eredmény osztva a nevező négyzetével.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{1-1}-\left(-2x^{1}\left(2\times 2x^{2-1}-13x^{1-1}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egyszerűsítünk.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összeszorozzuk a következőket: 2x^{2}-13x^{1}+21 és -2x^{0}.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\times 4x^{1}-2x^{1}\left(-13\right)x^{0}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összeszorozzuk a következőket: -2x^{1} és 4x^{1}-13x^{0}.
\frac{2\left(-2\right)x^{2}-13\left(-2\right)x^{1}+21\left(-2\right)x^{0}-\left(-2\times 4x^{1+1}-2\left(-13\right)x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Azonos alapú hatványok szorzásához összeadjuk a kitevőjüket.
\frac{-4x^{2}+26x^{1}-42x^{0}-\left(-8x^{2}+26x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Egyszerűsítünk.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Összevonjuk az egynemű kifejezéseket.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x+21\right)^{2}}
Minden t tagra, t^{1}=t.
\frac{4x^{2}-42}{\left(2x^{2}-13x+21\right)^{2}}
Az 0 kivételével minden t tagra, t^{0}=1.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}