Kiértékelés
\frac{1}{x^{24}}
Differenciálás x szerint
-\frac{24}{x^{25}}
Grafikon
Megosztás
Átmásolva a vágólapra
\frac{11^{0\times 5}}{x^{24}}
Összeadjuk a következőket: 5 és 6. Az eredmény 11.
\frac{11^{0}}{x^{24}}
Összeszorozzuk a következőket: 0 és 5. Az eredmény 0.
\frac{1}{x^{24}}
Kiszámoljuk a(z) 11 érték 0. hatványát. Az eredmény 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11^{0\times 5}}{x^{24}})
Összeadjuk a következőket: 5 és 6. Az eredmény 11.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11^{0}}{x^{24}})
Összeszorozzuk a következőket: 0 és 5. Az eredmény 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{24}})
Kiszámoljuk a(z) 11 érték 0. hatványát. Az eredmény 1.
-\left(x^{24}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{24})
Ha az F függvény az f\left(u\right) és az u=g\left(x\right) differenciálható függvények kompozíciója, azaz F\left(x\right)=f\left(g\left(x\right)\right), akkor F deriváltja az f függvény u szerinti deriváltjának és a g függvény x szerinti deriváltjának a szorzata, vagyis \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{24}\right)^{-2}\times 24x^{24-1}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
-24x^{23}\left(x^{24}\right)^{-2}
Egyszerűsítünk.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}