Kiértékelés
\frac{16384\sqrt[3]{724}}{9}\approx 16346,456330386
Megosztás
Átmásolva a vágólapra
\frac{\sqrt[5]{18014398509481984\times 128^{3}}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Kiszámoljuk a(z) 64 érték 9. hatványát. Az eredmény 18014398509481984.
\frac{\sqrt[5]{18014398509481984\times 2097152}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Kiszámoljuk a(z) 128 érték 3. hatványát. Az eredmény 2097152.
\frac{\sqrt[5]{37778931862957161709568}\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Összeszorozzuk a következőket: 18014398509481984 és 2097152. Az eredmény 37778931862957161709568.
\frac{32768\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{32\times 243}}
Kiszámoljuk a(z) \sqrt[5]{37778931862957161709568} értéket. Az eredmény 32768.
\frac{32768\sqrt[3]{\frac{724}{27}}}{\sqrt[5]{7776}}
Összeszorozzuk a következőket: 32 és 243. Az eredmény 7776.
\frac{32768\sqrt[3]{\frac{724}{27}}}{6}
Kiszámoljuk a(z) \sqrt[5]{7776} értéket. Az eredmény 6.
\frac{16384}{3}\sqrt[3]{\frac{724}{27}}
Elosztjuk a(z) 32768\sqrt[3]{\frac{724}{27}} értéket a(z) 6 értékkel. Az eredmény \frac{16384}{3}\sqrt[3]{\frac{724}{27}}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}