Megoldás a(z) β változóra
\beta =-\frac{\alpha \left(\alpha -8\right)}{3125}
Megoldás a(z) α változóra
\alpha =\sqrt{16-3125\beta }+4
\alpha =-\sqrt{16-3125\beta }+4\text{, }\beta \leq \frac{16}{3125}
Megosztás
Átmásolva a vágólapra
-8\alpha +3125\beta =-\alpha ^{2}
Mindkét oldalból kivonjuk a következőt: \alpha ^{2}. Ha nullából von ki számot, annak ellentettjét kapja.
3125\beta =-\alpha ^{2}+8\alpha
Bővítsük az egyenlet mindkét oldalát ezzel: 8\alpha .
3125\beta =8\alpha -\alpha ^{2}
Az egyenlet kanonikus alakban van.
\frac{3125\beta }{3125}=\frac{\alpha \left(8-\alpha \right)}{3125}
Mindkét oldalt elosztjuk ennyivel: 3125.
\beta =\frac{\alpha \left(8-\alpha \right)}{3125}
A(z) 3125 értékkel való osztás eltünteti a(z) 3125 értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}