Kiértékelés
\frac{7}{15}\approx 0,466666667
Szorzattá alakítás
\frac{7}{3 \cdot 5} = 0,4666666666666667
Megosztás
Átmásolva a vágólapra
\left(\frac{2}{3}\times \frac{4}{3}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
\frac{2}{3} elosztása a következővel: \frac{3}{4}. Ezt úgy végezzük, hogy a(z) \frac{2}{3} értéket megszorozzuk a(z) \frac{3}{4} reciprokával.
\left(\frac{2\times 4}{3\times 3}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
Összeszorozzuk a következőket: \frac{2}{3} és \frac{4}{3}. Ezt úgy végezzük, hogy a számlálót megszorozzuk a számlálóval, a nevezőt pedig a nevezővel.
\left(\frac{8}{9}-\left(\frac{4}{9}-\frac{1}{3}\right)\right)\times \frac{3}{5}
Elvégezzük a törtben (\frac{2\times 4}{3\times 3}) szereplő szorzásokat.
\left(\frac{8}{9}-\left(\frac{4}{9}-\frac{3}{9}\right)\right)\times \frac{3}{5}
9 és 3 legkisebb közös többszöröse 9. Átalakítjuk a számokat (\frac{4}{9} és \frac{1}{3}) törtekké, amelyek nevezője 9.
\left(\frac{8}{9}-\frac{4-3}{9}\right)\times \frac{3}{5}
Mivel \frac{4}{9} és \frac{3}{9} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\left(\frac{8}{9}-\frac{1}{9}\right)\times \frac{3}{5}
Kivonjuk a(z) 3 értékből a(z) 4 értéket. Az eredmény 1.
\frac{8-1}{9}\times \frac{3}{5}
Mivel \frac{8}{9} és \frac{1}{9} nevezője ugyanaz, a kivonásukhoz kivonjuk egymásból a számlálójukat.
\frac{7}{9}\times \frac{3}{5}
Kivonjuk a(z) 1 értékből a(z) 8 értéket. Az eredmény 7.
\frac{7\times 3}{9\times 5}
Összeszorozzuk a következőket: \frac{7}{9} és \frac{3}{5}. Ezt úgy végezzük, hogy a számlálót megszorozzuk a számlálóval, a nevezőt pedig a nevezővel.
\frac{21}{45}
Elvégezzük a törtben (\frac{7\times 3}{9\times 5}) szereplő szorzásokat.
\frac{7}{15}
A törtet (\frac{21}{45}) leegyszerűsítjük 3 kivonásával és kiejtésével.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}