דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

y\left(y+3\right)
הוצא את הגורם המשותף y.
y^{2}+3y=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
y=\frac{-3±3}{2}
הוצא את השורש הריבועי של 3^{2}.
y=\frac{0}{2}
כעת פתור את המשוואה y=\frac{-3±3}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-3 ל- ‎3.
y=0
חלק את ‎0 ב- ‎2.
y=-\frac{6}{2}
כעת פתור את המשוואה y=\frac{-3±3}{2} כאשר ± כולל סימן חיסור. החסר ‎3 מ- ‎-3.
y=-3
חלק את ‎-6 ב- ‎2.
y^{2}+3y=y\left(y-\left(-3\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎0 במקום x_{1} וב- ‎-3 במקום x_{2}.
y^{2}+3y=y\left(y+3\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.