דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

8x+2y=46,7x+3y=47
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
8x+2y=46
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
8x=-2y+46
החסר ‎2y משני אגפי המשוואה.
x=\frac{1}{8}\left(-2y+46\right)
חלק את שני האגפים ב- ‎8.
x=-\frac{1}{4}y+\frac{23}{4}
הכפל את ‎\frac{1}{8} ב- ‎-2y+46.
7\left(-\frac{1}{4}y+\frac{23}{4}\right)+3y=47
השתמש ב- ‎\frac{-y+23}{4} במקום ‎x במשוואה השניה, ‎7x+3y=47.
-\frac{7}{4}y+\frac{161}{4}+3y=47
הכפל את ‎7 ב- ‎\frac{-y+23}{4}.
\frac{5}{4}y+\frac{161}{4}=47
הוסף את ‎-\frac{7y}{4} ל- ‎3y.
\frac{5}{4}y=\frac{27}{4}
החסר ‎\frac{161}{4} משני אגפי המשוואה.
y=\frac{27}{5}
חלק את שני אגפי המשוואה ב- ‎\frac{5}{4}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=-\frac{1}{4}\times \frac{27}{5}+\frac{23}{4}
השתמש ב- ‎\frac{27}{5} במקום y ב- ‎x=-\frac{1}{4}y+\frac{23}{4}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=-\frac{27}{20}+\frac{23}{4}
הכפל את ‎-\frac{1}{4} ב- ‎\frac{27}{5} על-ידי הכפלת המונה במונה והמכנה במכנה. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=\frac{22}{5}
הוסף את ‎\frac{23}{4} ל- ‎-\frac{27}{20} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=\frac{22}{5},y=\frac{27}{5}
המערכת נפתרה כעת.
8x+2y=46,7x+3y=47
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\47\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}8&2\\7&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}8&2\\7&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&2\\7&3\end{matrix}\right))\left(\begin{matrix}46\\47\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8\times 3-2\times 7}&-\frac{2}{8\times 3-2\times 7}\\-\frac{7}{8\times 3-2\times 7}&\frac{8}{8\times 3-2\times 7}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
עבור מטריצת 2\times 2 ‎\left(\begin{matrix}a&b\\c&d\end{matrix}\right)‎, המטריצה ההפוכה היא ‎\left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)‎, כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\-\frac{7}{10}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}46\\47\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 46-\frac{1}{5}\times 47\\-\frac{7}{10}\times 46+\frac{4}{5}\times 47\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{27}{5}\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=\frac{22}{5},y=\frac{27}{5}
חלץ את רכיבי המטריצה x ו- y.
8x+2y=46,7x+3y=47
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
7\times 8x+7\times 2y=7\times 46,8\times 7x+8\times 3y=8\times 47
כדי להפוך את ‎8x ו- ‎7x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎7 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎8.
56x+14y=322,56x+24y=376
פשט.
56x-56x+14y-24y=322-376
החסר את ‎56x+24y=376 מ- ‎56x+14y=322 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
14y-24y=322-376
הוסף את ‎56x ל- ‎-56x. האיברים ‎56x ו- ‎-56x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
-10y=322-376
הוסף את ‎14y ל- ‎-24y.
-10y=-54
הוסף את ‎322 ל- ‎-376.
y=\frac{27}{5}
חלק את שני האגפים ב- ‎-10.
7x+3\times \frac{27}{5}=47
השתמש ב- ‎\frac{27}{5} במקום y ב- ‎7x+3y=47. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
7x+\frac{81}{5}=47
הכפל את ‎3 ב- ‎\frac{27}{5}.
7x=\frac{154}{5}
החסר ‎\frac{81}{5} משני אגפי המשוואה.
x=\frac{22}{5}
חלק את שני האגפים ב- ‎7.
x=\frac{22}{5},y=\frac{27}{5}
המערכת נפתרה כעת.