פרק לגורמים
\left(x-1\right)\left(y-1\right)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)
הערך
1+\left(xy\right)^{3}-y^{3}-x^{3}
שתף
הועתק ללוח
x^{3}\left(y^{3}-1\right)-\left(y^{3}-1\right)
קבץ את x^{3}y^{3}-x^{3}-y^{3}+1=\left(x^{3}y^{3}-x^{3}\right)+\left(-y^{3}+1\right), והוצא את הגורם המשותף x^{3} בראשונה ואת -1 בקבוצה השניה.
\left(y^{3}-1\right)\left(x^{3}-1\right)
הוצא את האיבר המשותף y^{3}-1 באמצעות חוק הפילוג.
\left(y-1\right)\left(y^{2}+y+1\right)
שקול את y^{3}-1. שכתב את y^{3}-1 כ- y^{3}-1^{3}. הפרש החזקות השלישיות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(x^{2}+x+1\right)
שקול את x^{3}-1. שכתב את x^{3}-1 כ- x^{3}-1^{3}. הפרש החזקות השלישיות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x-1\right)\left(y-1\right)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)
שכתב את הביטוי המפורק לגורמים המלא. הפולינומים הבאים אינם מפורקים לגורמים מאחר שאין להם שורשים רציונליים: x^{2}+x+1,y^{2}+y+1.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}