דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}-8x+12=0
הוסף ‎12 משני הצדדים.
a+b=-8 ab=12
כדי לפתור את המשוואה, פרק את x^{2}-8x+12 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-12 -2,-6 -3,-4
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 12.
-1-12=-13 -2-6=-8 -3-4=-7
חשב את הסכום של כל צמד.
a=-6 b=-2
הפתרון הוא הצמד שנותן את הסכום -8.
\left(x-6\right)\left(x-2\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=6 x=2
כדי למצוא פתרונות משוואה, פתור את x-6=0 ו- x-2=0.
x^{2}-8x+12=0
הוסף ‎12 משני הצדדים.
a+b=-8 ab=1\times 12=12
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+12. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-12 -2,-6 -3,-4
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 12.
-1-12=-13 -2-6=-8 -3-4=-7
חשב את הסכום של כל צמד.
a=-6 b=-2
הפתרון הוא הצמד שנותן את הסכום -8.
\left(x^{2}-6x\right)+\left(-2x+12\right)
שכתב את ‎x^{2}-8x+12 כ- ‎\left(x^{2}-6x\right)+\left(-2x+12\right).
x\left(x-6\right)-2\left(x-6\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -2 בקבוצה השניה.
\left(x-6\right)\left(x-2\right)
הוצא את האיבר המשותף x-6 באמצעות חוק הפילוג.
x=6 x=2
כדי למצוא פתרונות משוואה, פתור את x-6=0 ו- x-2=0.
x^{2}-8x=-12
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x^{2}-8x-\left(-12\right)=-12-\left(-12\right)
הוסף ‎12 לשני אגפי המשוואה.
x^{2}-8x-\left(-12\right)=0
החסרת -12 מעצמו נותנת 0.
x^{2}-8x+12=0
החסר ‎-12 מ- ‎0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -8 במקום b, וב- 12 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
‎-8 בריבוע.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
הכפל את ‎-4 ב- ‎12.
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
הוסף את ‎64 ל- ‎-48.
x=\frac{-\left(-8\right)±4}{2}
הוצא את השורש הריבועי של 16.
x=\frac{8±4}{2}
ההופכי של ‎-8 הוא ‎8.
x=\frac{12}{2}
כעת פתור את המשוואה x=\frac{8±4}{2} כאשר ± כולל סימן חיבור. הוסף את ‎8 ל- ‎4.
x=6
חלק את ‎12 ב- ‎2.
x=\frac{4}{2}
כעת פתור את המשוואה x=\frac{8±4}{2} כאשר ± כולל סימן חיסור. החסר ‎4 מ- ‎8.
x=2
חלק את ‎4 ב- ‎2.
x=6 x=2
המשוואה נפתרה כעת.
x^{2}-8x=-12
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
חלק את ‎-8, המקדם של האיבר x, ב- 2 כדי לקבל ‎-4. לאחר מכן הוסף את הריבוע של -4 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-8x+16=-12+16
‎-4 בריבוע.
x^{2}-8x+16=4
הוסף את ‎-12 ל- ‎16.
\left(x-4\right)^{2}=4
פרק x^{2}-8x+16 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-4=2 x-4=-2
פשט.
x=6 x=2
הוסף ‎4 לשני אגפי המשוואה.