דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-16 ab=1\times 64=64
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx+64. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-64 -2,-32 -4,-16 -8,-8
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
חשב את הסכום של כל צמד.
a=-8 b=-8
הפתרון הוא הצמד שנותן את הסכום -16.
\left(x^{2}-8x\right)+\left(-8x+64\right)
שכתב את ‎x^{2}-16x+64 כ- ‎\left(x^{2}-8x\right)+\left(-8x+64\right).
x\left(x-8\right)-8\left(x-8\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -8 בקבוצה השניה.
\left(x-8\right)\left(x-8\right)
הוצא את האיבר המשותף x-8 באמצעות חוק הפילוג.
\left(x-8\right)^{2}
כתוב מחדש כריבוע בינומי.
factor(x^{2}-16x+64)
לטרינום זה יש צורה של ריבוע טרינומי, שייתכן כי הוכפל בגורם משותף. ניתן לפרק ריבועים טרינומיים לגורמים על-ידי מציאת השורשים הריבועיים של האיבר המוביל והאיבר הנגרר.
\sqrt{64}=8
מצא את השורש הריבועי של האיבר הנגרר, 64.
\left(x-8\right)^{2}
הריבוע הטרינומי הוא הריבוע של הבינום שהוא הסכום או ההפרש של השורשים הריבועיים של האיבר המוביל והאיבר הנגרר, כשהסימן נקבע לפי סימן האיבר האמצעי של הריבוע הטרינומי.
x^{2}-16x+64=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 64}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 64}}{2}
‎-16 בריבוע.
x=\frac{-\left(-16\right)±\sqrt{256-256}}{2}
הכפל את ‎-4 ב- ‎64.
x=\frac{-\left(-16\right)±\sqrt{0}}{2}
הוסף את ‎256 ל- ‎-256.
x=\frac{-\left(-16\right)±0}{2}
הוצא את השורש הריבועי של 0.
x=\frac{16±0}{2}
ההופכי של ‎-16 הוא ‎16.
x^{2}-16x+64=\left(x-8\right)\left(x-8\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎8 במקום x_{1} וב- ‎8 במקום x_{2}.