דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-16 ab=1\times 63=63
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx+63. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-63 -3,-21 -7,-9
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 63.
-1-63=-64 -3-21=-24 -7-9=-16
חשב את הסכום של כל צמד.
a=-9 b=-7
הפתרון הוא הצמד שנותן את הסכום -16.
\left(x^{2}-9x\right)+\left(-7x+63\right)
שכתב את ‎x^{2}-16x+63 כ- ‎\left(x^{2}-9x\right)+\left(-7x+63\right).
x\left(x-9\right)-7\left(x-9\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת -7 בקבוצה השניה.
\left(x-9\right)\left(x-7\right)
הוצא את האיבר המשותף x-9 באמצעות חוק הפילוג.
x^{2}-16x+63=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 63}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 63}}{2}
‎-16 בריבוע.
x=\frac{-\left(-16\right)±\sqrt{256-252}}{2}
הכפל את ‎-4 ב- ‎63.
x=\frac{-\left(-16\right)±\sqrt{4}}{2}
הוסף את ‎256 ל- ‎-252.
x=\frac{-\left(-16\right)±2}{2}
הוצא את השורש הריבועי של 4.
x=\frac{16±2}{2}
ההופכי של ‎-16 הוא ‎16.
x=\frac{18}{2}
כעת פתור את המשוואה x=\frac{16±2}{2} כאשר ± כולל סימן חיבור. הוסף את ‎16 ל- ‎2.
x=9
חלק את ‎18 ב- ‎2.
x=\frac{14}{2}
כעת פתור את המשוואה x=\frac{16±2}{2} כאשר ± כולל סימן חיסור. החסר ‎2 מ- ‎16.
x=7
חלק את ‎14 ב- ‎2.
x^{2}-16x+63=\left(x-9\right)\left(x-7\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎9 במקום x_{1} וב- ‎7 במקום x_{2}.