דילוג לתוכן העיקרי
פתור עבור x (complex solution)
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}-x=-30
החסר ‎x משני האגפים.
x^{2}-x+30=0
הוסף ‎30 משני הצדדים.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 30}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -1 במקום b, וב- 30 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-120}}{2}
הכפל את ‎-4 ב- ‎30.
x=\frac{-\left(-1\right)±\sqrt{-119}}{2}
הוסף את ‎1 ל- ‎-120.
x=\frac{-\left(-1\right)±\sqrt{119}i}{2}
הוצא את השורש הריבועי של -119.
x=\frac{1±\sqrt{119}i}{2}
ההופכי של ‎-1 הוא ‎1.
x=\frac{1+\sqrt{119}i}{2}
כעת פתור את המשוואה x=\frac{1±\sqrt{119}i}{2} כאשר ± כולל סימן חיבור. הוסף את ‎1 ל- ‎i\sqrt{119}.
x=\frac{-\sqrt{119}i+1}{2}
כעת פתור את המשוואה x=\frac{1±\sqrt{119}i}{2} כאשר ± כולל סימן חיסור. החסר ‎i\sqrt{119} מ- ‎1.
x=\frac{1+\sqrt{119}i}{2} x=\frac{-\sqrt{119}i+1}{2}
המשוואה נפתרה כעת.
x^{2}-x=-30
החסר ‎x משני האגפים.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-30+\left(-\frac{1}{2}\right)^{2}
חלק את ‎-1, המקדם של האיבר x, ב- 2 כדי לקבל ‎-\frac{1}{2}. לאחר מכן הוסף את הריבוע של -\frac{1}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-x+\frac{1}{4}=-30+\frac{1}{4}
העלה את ‎-\frac{1}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-x+\frac{1}{4}=-\frac{119}{4}
הוסף את ‎-30 ל- ‎\frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{119}{4}
פרק x^{2}-x+\frac{1}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{1}{2}=\frac{\sqrt{119}i}{2} x-\frac{1}{2}=-\frac{\sqrt{119}i}{2}
פשט.
x=\frac{1+\sqrt{119}i}{2} x=\frac{-\sqrt{119}i+1}{2}
הוסף ‎\frac{1}{2} לשני אגפי המשוואה.