דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=7 ab=12
כדי לפתור את המשוואה, פרק את x^{2}+7x+12 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,12 2,6 3,4
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 12.
1+12=13 2+6=8 3+4=7
חשב את הסכום של כל צמד.
a=3 b=4
הפתרון הוא הצמד שנותן את הסכום 7.
\left(x+3\right)\left(x+4\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=-3 x=-4
כדי למצוא פתרונות משוואה, פתור את x+3=0 ו- x+4=0.
a+b=7 ab=1\times 12=12
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+12. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,12 2,6 3,4
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 12.
1+12=13 2+6=8 3+4=7
חשב את הסכום של כל צמד.
a=3 b=4
הפתרון הוא הצמד שנותן את הסכום 7.
\left(x^{2}+3x\right)+\left(4x+12\right)
שכתב את ‎x^{2}+7x+12 כ- ‎\left(x^{2}+3x\right)+\left(4x+12\right).
x\left(x+3\right)+4\left(x+3\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 4 בקבוצה השניה.
\left(x+3\right)\left(x+4\right)
הוצא את האיבר המשותף x+3 באמצעות חוק הפילוג.
x=-3 x=-4
כדי למצוא פתרונות משוואה, פתור את x+3=0 ו- x+4=0.
x^{2}+7x+12=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-7±\sqrt{7^{2}-4\times 12}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 7 במקום b, וב- 12 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 12}}{2}
‎7 בריבוע.
x=\frac{-7±\sqrt{49-48}}{2}
הכפל את ‎-4 ב- ‎12.
x=\frac{-7±\sqrt{1}}{2}
הוסף את ‎49 ל- ‎-48.
x=\frac{-7±1}{2}
הוצא את השורש הריבועי של 1.
x=-\frac{6}{2}
כעת פתור את המשוואה x=\frac{-7±1}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-7 ל- ‎1.
x=-3
חלק את ‎-6 ב- ‎2.
x=-\frac{8}{2}
כעת פתור את המשוואה x=\frac{-7±1}{2} כאשר ± כולל סימן חיסור. החסר ‎1 מ- ‎-7.
x=-4
חלק את ‎-8 ב- ‎2.
x=-3 x=-4
המשוואה נפתרה כעת.
x^{2}+7x+12=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+7x+12-12=-12
החסר ‎12 משני אגפי המשוואה.
x^{2}+7x=-12
החסרת 12 מעצמו נותנת 0.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-12+\left(\frac{7}{2}\right)^{2}
חלק את ‎7, המקדם של האיבר x, ב- 2 כדי לקבל ‎\frac{7}{2}. לאחר מכן הוסף את הריבוע של \frac{7}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+7x+\frac{49}{4}=-12+\frac{49}{4}
העלה את ‎\frac{7}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+7x+\frac{49}{4}=\frac{1}{4}
הוסף את ‎-12 ל- ‎\frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{1}{4}
פרק את ‎x^{2}+7x+\frac{49}{4} לגורמים. באופן כללי, כאשר x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים כ- \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{7}{2}=\frac{1}{2} x+\frac{7}{2}=-\frac{1}{2}
פשט.
x=-3 x=-4
החסר ‎\frac{7}{2} משני אגפי המשוואה.