דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}+49x=360
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x^{2}+49x-360=360-360
החסר ‎360 משני אגפי המשוואה.
x^{2}+49x-360=0
החסרת 360 מעצמו נותנת 0.
x=\frac{-49±\sqrt{49^{2}-4\left(-360\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 49 במקום b, וב- -360 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-360\right)}}{2}
‎49 בריבוע.
x=\frac{-49±\sqrt{2401+1440}}{2}
הכפל את ‎-4 ב- ‎-360.
x=\frac{-49±\sqrt{3841}}{2}
הוסף את ‎2401 ל- ‎1440.
x=\frac{\sqrt{3841}-49}{2}
כעת פתור את המשוואה x=\frac{-49±\sqrt{3841}}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-49 ל- ‎\sqrt{3841}.
x=\frac{-\sqrt{3841}-49}{2}
כעת פתור את המשוואה x=\frac{-49±\sqrt{3841}}{2} כאשר ± כולל סימן חיסור. החסר ‎\sqrt{3841} מ- ‎-49.
x=\frac{\sqrt{3841}-49}{2} x=\frac{-\sqrt{3841}-49}{2}
המשוואה נפתרה כעת.
x^{2}+49x=360
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+49x+\left(\frac{49}{2}\right)^{2}=360+\left(\frac{49}{2}\right)^{2}
חלק את ‎49, המקדם של האיבר x, ב- 2 כדי לקבל ‎\frac{49}{2}. לאחר מכן הוסף את הריבוע של \frac{49}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+49x+\frac{2401}{4}=360+\frac{2401}{4}
העלה את ‎\frac{49}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+49x+\frac{2401}{4}=\frac{3841}{4}
הוסף את ‎360 ל- ‎\frac{2401}{4}.
\left(x+\frac{49}{2}\right)^{2}=\frac{3841}{4}
פרק x^{2}+49x+\frac{2401}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{2}\right)^{2}}=\sqrt{\frac{3841}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{49}{2}=\frac{\sqrt{3841}}{2} x+\frac{49}{2}=-\frac{\sqrt{3841}}{2}
פשט.
x=\frac{\sqrt{3841}-49}{2} x=\frac{-\sqrt{3841}-49}{2}
החסר ‎\frac{49}{2} משני אגפי המשוואה.