דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}+4x-5=0
החסר ‎5 משני האגפים.
a+b=4 ab=-5
כדי לפתור את המשוואה, פרק את x^{2}+4x-5 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=5
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x-1\right)\left(x+5\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=1 x=-5
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+5=0.
x^{2}+4x-5=0
החסר ‎5 משני האגפים.
a+b=4 ab=1\left(-5\right)=-5
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-5. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=-1 b=5
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(x^{2}-x\right)+\left(5x-5\right)
שכתב את ‎x^{2}+4x-5 כ- ‎\left(x^{2}-x\right)+\left(5x-5\right).
x\left(x-1\right)+5\left(x-1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(x-1\right)\left(x+5\right)
הוצא את האיבר המשותף x-1 באמצעות חוק הפילוג.
x=1 x=-5
כדי למצוא פתרונות משוואה, פתור את x-1=0 ו- x+5=0.
x^{2}+4x=5
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x^{2}+4x-5=5-5
החסר ‎5 משני אגפי המשוואה.
x^{2}+4x-5=0
החסרת 5 מעצמו נותנת 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-5\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 4 במקום b, וב- -5 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-5\right)}}{2}
‎4 בריבוע.
x=\frac{-4±\sqrt{16+20}}{2}
הכפל את ‎-4 ב- ‎-5.
x=\frac{-4±\sqrt{36}}{2}
הוסף את ‎16 ל- ‎20.
x=\frac{-4±6}{2}
הוצא את השורש הריבועי של 36.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{-4±6}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-4 ל- ‎6.
x=1
חלק את ‎2 ב- ‎2.
x=-\frac{10}{2}
כעת פתור את המשוואה x=\frac{-4±6}{2} כאשר ± כולל סימן חיסור. החסר ‎6 מ- ‎-4.
x=-5
חלק את ‎-10 ב- ‎2.
x=1 x=-5
המשוואה נפתרה כעת.
x^{2}+4x=5
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+4x+2^{2}=5+2^{2}
חלק את ‎4, המקדם של האיבר x, ב- 2 כדי לקבל ‎2. לאחר מכן הוסף את הריבוע של 2 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+4x+4=5+4
‎2 בריבוע.
x^{2}+4x+4=9
הוסף את ‎5 ל- ‎4.
\left(x+2\right)^{2}=9
פרק x^{2}+4x+4 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+2=3 x+2=-3
פשט.
x=1 x=-5
החסר ‎2 משני אגפי המשוואה.