דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=2 ab=-63
כדי לפתור את המשוואה, פרק את x^{2}+2x-63 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,63 -3,21 -7,9
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -63.
-1+63=62 -3+21=18 -7+9=2
חשב את הסכום של כל צמד.
a=-7 b=9
הפתרון הוא הצמד שנותן את הסכום 2.
\left(x-7\right)\left(x+9\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=7 x=-9
כדי למצוא פתרונות משוואה, פתור את x-7=0 ו- x+9=0.
a+b=2 ab=1\left(-63\right)=-63
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-63. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,63 -3,21 -7,9
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -63.
-1+63=62 -3+21=18 -7+9=2
חשב את הסכום של כל צמד.
a=-7 b=9
הפתרון הוא הצמד שנותן את הסכום 2.
\left(x^{2}-7x\right)+\left(9x-63\right)
שכתב את ‎x^{2}+2x-63 כ- ‎\left(x^{2}-7x\right)+\left(9x-63\right).
x\left(x-7\right)+9\left(x-7\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 9 בקבוצה השניה.
\left(x-7\right)\left(x+9\right)
הוצא את האיבר המשותף x-7 באמצעות חוק הפילוג.
x=7 x=-9
כדי למצוא פתרונות משוואה, פתור את x-7=0 ו- x+9=0.
x^{2}+2x-63=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-2±\sqrt{2^{2}-4\left(-63\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 2 במקום b, וב- -63 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-63\right)}}{2}
‎2 בריבוע.
x=\frac{-2±\sqrt{4+252}}{2}
הכפל את ‎-4 ב- ‎-63.
x=\frac{-2±\sqrt{256}}{2}
הוסף את ‎4 ל- ‎252.
x=\frac{-2±16}{2}
הוצא את השורש הריבועי של 256.
x=\frac{14}{2}
כעת פתור את המשוואה x=\frac{-2±16}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-2 ל- ‎16.
x=7
חלק את ‎14 ב- ‎2.
x=-\frac{18}{2}
כעת פתור את המשוואה x=\frac{-2±16}{2} כאשר ± כולל סימן חיסור. החסר ‎16 מ- ‎-2.
x=-9
חלק את ‎-18 ב- ‎2.
x=7 x=-9
המשוואה נפתרה כעת.
x^{2}+2x-63=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+2x-63-\left(-63\right)=-\left(-63\right)
הוסף ‎63 לשני אגפי המשוואה.
x^{2}+2x=-\left(-63\right)
החסרת -63 מעצמו נותנת 0.
x^{2}+2x=63
החסר ‎-63 מ- ‎0.
x^{2}+2x+1^{2}=63+1^{2}
חלק את ‎2, המקדם של האיבר x, ב- 2 כדי לקבל ‎1. לאחר מכן הוסף את הריבוע של 1 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+2x+1=63+1
‎1 בריבוע.
x^{2}+2x+1=64
הוסף את ‎63 ל- ‎1.
\left(x+1\right)^{2}=64
פרק x^{2}+2x+1 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{64}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+1=8 x+1=-8
פשט.
x=7 x=-9
החסר ‎1 משני אגפי המשוואה.