דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}+2x-36-2x=0
החסר ‎2x משני האגפים.
x^{2}-36=0
כנס את ‎2x ו- ‎-2x כדי לקבל ‎0.
\left(x-6\right)\left(x+6\right)=0
שקול את x^{2}-36. שכתב את ‎x^{2}-36 כ- ‎x^{2}-6^{2}. הפרש הריבועים יכול להיות מפורק לגורמים באמצעות הכלל: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
כדי למצוא פתרונות משוואה, פתור את x-6=0 ו- x+6=0.
x^{2}+2x-36-2x=0
החסר ‎2x משני האגפים.
x^{2}-36=0
כנס את ‎2x ו- ‎-2x כדי לקבל ‎0.
x^{2}=36
הוסף ‎36 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
x=6 x=-6
הוצא את השורש הריבועי של שני אגפי המשוואה.
x^{2}+2x-36-2x=0
החסר ‎2x משני האגפים.
x^{2}-36=0
כנס את ‎2x ו- ‎-2x כדי לקבל ‎0.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 0 במקום b, וב- -36 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
‎0 בריבוע.
x=\frac{0±\sqrt{144}}{2}
הכפל את ‎-4 ב- ‎-36.
x=\frac{0±12}{2}
הוצא את השורש הריבועי של 144.
x=6
כעת פתור את המשוואה x=\frac{0±12}{2} כאשר ± כולל סימן חיבור. חלק את ‎12 ב- ‎2.
x=-6
כעת פתור את המשוואה x=\frac{0±12}{2} כאשר ± כולל סימן חיסור. חלק את ‎-12 ב- ‎2.
x=6 x=-6
המשוואה נפתרה כעת.