דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=12 ab=1\times 36=36
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- x^{2}+ax+bx+36. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,36 2,18 3,12 4,9 6,6
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
חשב את הסכום של כל צמד.
a=6 b=6
הפתרון הוא הצמד שנותן את הסכום 12.
\left(x^{2}+6x\right)+\left(6x+36\right)
שכתב את ‎x^{2}+12x+36 כ- ‎\left(x^{2}+6x\right)+\left(6x+36\right).
x\left(x+6\right)+6\left(x+6\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 6 בקבוצה השניה.
\left(x+6\right)\left(x+6\right)
הוצא את האיבר המשותף x+6 באמצעות חוק הפילוג.
\left(x+6\right)^{2}
כתוב מחדש כריבוע בינומי.
factor(x^{2}+12x+36)
לטרינום זה יש צורה של ריבוע טרינומי, שייתכן כי הוכפל בגורם משותף. ניתן לפרק ריבועים טרינומיים לגורמים על-ידי מציאת השורשים הריבועיים של האיבר המוביל והאיבר הנגרר.
\sqrt{36}=6
מצא את השורש הריבועי של האיבר הנגרר, 36.
\left(x+6\right)^{2}
הריבוע הטרינומי הוא הריבוע של הבינום שהוא הסכום או ההפרש של השורשים הריבועיים של האיבר המוביל והאיבר הנגרר, כשהסימן נקבע לפי סימן האיבר האמצעי של הריבוע הטרינומי.
x^{2}+12x+36=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-12±\sqrt{144-4\times 36}}{2}
‎12 בריבוע.
x=\frac{-12±\sqrt{144-144}}{2}
הכפל את ‎-4 ב- ‎36.
x=\frac{-12±\sqrt{0}}{2}
הוסף את ‎144 ל- ‎-144.
x=\frac{-12±0}{2}
הוצא את השורש הריבועי של 0.
x^{2}+12x+36=\left(x-\left(-6\right)\right)\left(x-\left(-6\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎-6 במקום x_{1} וב- ‎-6 במקום x_{2}.
x^{2}+12x+36=\left(x+6\right)\left(x+6\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.