דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=10 ab=25
כדי לפתור את המשוואה, פרק את x^{2}+10x+25 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,25 5,5
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 25.
1+25=26 5+5=10
חשב את הסכום של כל צמד.
a=5 b=5
הפתרון הוא הצמד שנותן את הסכום 10.
\left(x+5\right)\left(x+5\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
\left(x+5\right)^{2}
כתוב מחדש כריבוע בינומי.
x=-5
כדי למצוא פתרון משוואה, פתור את x+5=0.
a+b=10 ab=1\times 25=25
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx+25. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,25 5,5
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא חיובי, a ו- b שניהם חיוביים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 25.
1+25=26 5+5=10
חשב את הסכום של כל צמד.
a=5 b=5
הפתרון הוא הצמד שנותן את הסכום 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
שכתב את ‎x^{2}+10x+25 כ- ‎\left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 5 בקבוצה השניה.
\left(x+5\right)\left(x+5\right)
הוצא את האיבר המשותף x+5 באמצעות חוק הפילוג.
\left(x+5\right)^{2}
כתוב מחדש כריבוע בינומי.
x=-5
כדי למצוא פתרון משוואה, פתור את x+5=0.
x^{2}+10x+25=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 10 במקום b, וב- 25 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
‎10 בריבוע.
x=\frac{-10±\sqrt{100-100}}{2}
הכפל את ‎-4 ב- ‎25.
x=\frac{-10±\sqrt{0}}{2}
הוסף את ‎100 ל- ‎-100.
x=-\frac{10}{2}
הוצא את השורש הריבועי של 0.
x=-5
חלק את ‎-10 ב- ‎2.
\left(x+5\right)^{2}=0
פרק את ‎x^{2}+10x+25 לגורמים. באופן כללי, כאשר x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים כ- \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+5=0 x+5=0
פשט.
x=-5 x=-5
החסר ‎5 משני אגפי המשוואה.
x=-5
המשוואה נפתרה כעת. הפתרונות זהים.