דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x^{2}+x^{2}+14x+49=\left(x+9\right)^{2}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+7\right)^{2}.
2x^{2}+14x+49=\left(x+9\right)^{2}
כנס את ‎x^{2} ו- ‎x^{2} כדי לקבל ‎2x^{2}.
2x^{2}+14x+49=x^{2}+18x+81
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+9\right)^{2}.
2x^{2}+14x+49-x^{2}=18x+81
החסר ‎x^{2} משני האגפים.
x^{2}+14x+49=18x+81
כנס את ‎2x^{2} ו- ‎-x^{2} כדי לקבל ‎x^{2}.
x^{2}+14x+49-18x=81
החסר ‎18x משני האגפים.
x^{2}-4x+49=81
כנס את ‎14x ו- ‎-18x כדי לקבל ‎-4x.
x^{2}-4x+49-81=0
החסר ‎81 משני האגפים.
x^{2}-4x-32=0
החסר את 81 מ- 49 כדי לקבל -32.
a+b=-4 ab=-32
כדי לפתור את המשוואה, פרק את x^{2}-4x-32 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-32 2,-16 4,-8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -32.
1-32=-31 2-16=-14 4-8=-4
חשב את הסכום של כל צמד.
a=-8 b=4
הפתרון הוא הצמד שנותן את הסכום -4.
\left(x-8\right)\left(x+4\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=8 x=-4
כדי למצוא פתרונות משוואה, פתור את x-8=0 ו- x+4=0.
x^{2}+x^{2}+14x+49=\left(x+9\right)^{2}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+7\right)^{2}.
2x^{2}+14x+49=\left(x+9\right)^{2}
כנס את ‎x^{2} ו- ‎x^{2} כדי לקבל ‎2x^{2}.
2x^{2}+14x+49=x^{2}+18x+81
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+9\right)^{2}.
2x^{2}+14x+49-x^{2}=18x+81
החסר ‎x^{2} משני האגפים.
x^{2}+14x+49=18x+81
כנס את ‎2x^{2} ו- ‎-x^{2} כדי לקבל ‎x^{2}.
x^{2}+14x+49-18x=81
החסר ‎18x משני האגפים.
x^{2}-4x+49=81
כנס את ‎14x ו- ‎-18x כדי לקבל ‎-4x.
x^{2}-4x+49-81=0
החסר ‎81 משני האגפים.
x^{2}-4x-32=0
החסר את 81 מ- 49 כדי לקבל -32.
a+b=-4 ab=1\left(-32\right)=-32
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-32. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-32 2,-16 4,-8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -32.
1-32=-31 2-16=-14 4-8=-4
חשב את הסכום של כל צמד.
a=-8 b=4
הפתרון הוא הצמד שנותן את הסכום -4.
\left(x^{2}-8x\right)+\left(4x-32\right)
שכתב את ‎x^{2}-4x-32 כ- ‎\left(x^{2}-8x\right)+\left(4x-32\right).
x\left(x-8\right)+4\left(x-8\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 4 בקבוצה השניה.
\left(x-8\right)\left(x+4\right)
הוצא את האיבר המשותף x-8 באמצעות חוק הפילוג.
x=8 x=-4
כדי למצוא פתרונות משוואה, פתור את x-8=0 ו- x+4=0.
x^{2}+x^{2}+14x+49=\left(x+9\right)^{2}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+7\right)^{2}.
2x^{2}+14x+49=\left(x+9\right)^{2}
כנס את ‎x^{2} ו- ‎x^{2} כדי לקבל ‎2x^{2}.
2x^{2}+14x+49=x^{2}+18x+81
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+9\right)^{2}.
2x^{2}+14x+49-x^{2}=18x+81
החסר ‎x^{2} משני האגפים.
x^{2}+14x+49=18x+81
כנס את ‎2x^{2} ו- ‎-x^{2} כדי לקבל ‎x^{2}.
x^{2}+14x+49-18x=81
החסר ‎18x משני האגפים.
x^{2}-4x+49=81
כנס את ‎14x ו- ‎-18x כדי לקבל ‎-4x.
x^{2}-4x+49-81=0
החסר ‎81 משני האגפים.
x^{2}-4x-32=0
החסר את 81 מ- 49 כדי לקבל -32.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-32\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -4 במקום b, וב- -32 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-32\right)}}{2}
‎-4 בריבוע.
x=\frac{-\left(-4\right)±\sqrt{16+128}}{2}
הכפל את ‎-4 ב- ‎-32.
x=\frac{-\left(-4\right)±\sqrt{144}}{2}
הוסף את ‎16 ל- ‎128.
x=\frac{-\left(-4\right)±12}{2}
הוצא את השורש הריבועי של 144.
x=\frac{4±12}{2}
ההופכי של ‎-4 הוא ‎4.
x=\frac{16}{2}
כעת פתור את המשוואה x=\frac{4±12}{2} כאשר ± כולל סימן חיבור. הוסף את ‎4 ל- ‎12.
x=8
חלק את ‎16 ב- ‎2.
x=-\frac{8}{2}
כעת פתור את המשוואה x=\frac{4±12}{2} כאשר ± כולל סימן חיסור. החסר ‎12 מ- ‎4.
x=-4
חלק את ‎-8 ב- ‎2.
x=8 x=-4
המשוואה נפתרה כעת.
x^{2}+x^{2}+14x+49=\left(x+9\right)^{2}
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+7\right)^{2}.
2x^{2}+14x+49=\left(x+9\right)^{2}
כנס את ‎x^{2} ו- ‎x^{2} כדי לקבל ‎2x^{2}.
2x^{2}+14x+49=x^{2}+18x+81
השתמש בבינום של ניוטון \left(a+b\right)^{2}=a^{2}+2ab+b^{2} כדי להרחיב את ‎\left(x+9\right)^{2}.
2x^{2}+14x+49-x^{2}=18x+81
החסר ‎x^{2} משני האגפים.
x^{2}+14x+49=18x+81
כנס את ‎2x^{2} ו- ‎-x^{2} כדי לקבל ‎x^{2}.
x^{2}+14x+49-18x=81
החסר ‎18x משני האגפים.
x^{2}-4x+49=81
כנס את ‎14x ו- ‎-18x כדי לקבל ‎-4x.
x^{2}-4x=81-49
החסר ‎49 משני האגפים.
x^{2}-4x=32
החסר את 49 מ- 81 כדי לקבל 32.
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
חלק את ‎-4, המקדם של האיבר x, ב- 2 כדי לקבל ‎-2. לאחר מכן הוסף את הריבוע של -2 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-4x+4=32+4
‎-2 בריבוע.
x^{2}-4x+4=36
הוסף את ‎32 ל- ‎4.
\left(x-2\right)^{2}=36
פרק x^{2}-4x+4 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-2=6 x-2=-6
פשט.
x=8 x=-4
הוסף ‎2 לשני אגפי המשוואה.