דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

xx+x\times 5=-6
המשתנה x אינו יכול להיות שווה ל- ‎0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- ‎x.
x^{2}+x\times 5=-6
הכפל את ‎x ו- ‎x כדי לקבל ‎x^{2}.
x^{2}+x\times 5+6=0
הוסף ‎6 משני הצדדים.
x^{2}+5x+6=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 5 במקום b, וב- 6 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
‎5 בריבוע.
x=\frac{-5±\sqrt{25-24}}{2}
הכפל את ‎-4 ב- ‎6.
x=\frac{-5±\sqrt{1}}{2}
הוסף את ‎25 ל- ‎-24.
x=\frac{-5±1}{2}
הוצא את השורש הריבועי של 1.
x=-\frac{4}{2}
כעת פתור את המשוואה x=\frac{-5±1}{2} כאשר ± כולל סימן חיבור. הוסף את ‎-5 ל- ‎1.
x=-2
חלק את ‎-4 ב- ‎2.
x=-\frac{6}{2}
כעת פתור את המשוואה x=\frac{-5±1}{2} כאשר ± כולל סימן חיסור. החסר ‎1 מ- ‎-5.
x=-3
חלק את ‎-6 ב- ‎2.
x=-2 x=-3
המשוואה נפתרה כעת.
xx+x\times 5=-6
המשתנה x אינו יכול להיות שווה ל- ‎0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- ‎x.
x^{2}+x\times 5=-6
הכפל את ‎x ו- ‎x כדי לקבל ‎x^{2}.
x^{2}+5x=-6
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
חלק את ‎5, המקדם של האיבר x, ב- 2 כדי לקבל ‎\frac{5}{2}. לאחר מכן הוסף את הריבוע של \frac{5}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
העלה את ‎\frac{5}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
הוסף את ‎-6 ל- ‎\frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
פרק x^{2}+5x+\frac{25}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
פשט.
x=-2 x=-3
החסר ‎\frac{5}{2} משני אגפי המשוואה.