דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x+3y=6,5x-2y=13
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
x+3y=6
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
x=-3y+6
החסר ‎3y משני אגפי המשוואה.
5\left(-3y+6\right)-2y=13
השתמש ב- ‎-3y+6 במקום ‎x במשוואה השניה, ‎5x-2y=13.
-15y+30-2y=13
הכפל את ‎5 ב- ‎-3y+6.
-17y+30=13
הוסף את ‎-15y ל- ‎-2y.
-17y=-17
החסר ‎30 משני אגפי המשוואה.
y=1
חלק את שני האגפים ב- ‎-17.
x=-3+6
השתמש ב- ‎1 במקום y ב- ‎x=-3y+6. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=3
הוסף את ‎6 ל- ‎-3.
x=3,y=1
המערכת נפתרה כעת.
x+3y=6,5x-2y=13
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}1&3\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3\times 5}&-\frac{3}{-2-3\times 5}\\-\frac{5}{-2-3\times 5}&\frac{1}{-2-3\times 5}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\\frac{5}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 6+\frac{3}{17}\times 13\\\frac{5}{17}\times 6-\frac{1}{17}\times 13\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=3,y=1
חלץ את רכיבי המטריצה x ו- y.
x+3y=6,5x-2y=13
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
5x+5\times 3y=5\times 6,5x-2y=13
כדי להפוך את ‎x ו- ‎5x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎5 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎1.
5x+15y=30,5x-2y=13
פשט.
5x-5x+15y+2y=30-13
החסר את ‎5x-2y=13 מ- ‎5x+15y=30 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
15y+2y=30-13
הוסף את ‎5x ל- ‎-5x. האיברים ‎5x ו- ‎-5x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
17y=30-13
הוסף את ‎15y ל- ‎2y.
17y=17
הוסף את ‎30 ל- ‎-13.
y=1
חלק את שני האגפים ב- ‎17.
5x-2=13
השתמש ב- ‎1 במקום y ב- ‎5x-2y=13. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
5x=15
הוסף ‎2 לשני אגפי המשוואה.
x=3
חלק את שני האגפים ב- ‎5.
x=3,y=1
המערכת נפתרה כעת.