פרק לגורמים
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
הערך
k^{135}+1
שתף
הועתק ללוח
\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
שכתב את k^{135}+1 כ- \left(k^{45}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
שקול את k^{45}+1. שכתב את k^{45}+1 כ- \left(k^{15}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
שקול את k^{15}+1. שכתב את k^{15}+1 כ- \left(k^{5}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
שקול את k^{5}+1. לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע 1 ו- q מחלק את המקדם המוביל 1. שורש אפשרי אחד הוא -1. פרק את הפולינום לגורמים על-ידי חלוקתו ב- k+1.
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
שכתב את הביטוי המפורק לגורמים המלא. הפולינומים הבאים אינם מפורקים לגורמים מאחר שאין להם שורשים רציונליים: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}