דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
שכתב את ‎k^{135}+1 כ- ‎\left(k^{45}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
שקול את k^{45}+1. שכתב את ‎k^{45}+1 כ- ‎\left(k^{15}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
שקול את k^{15}+1. שכתב את ‎k^{15}+1 כ- ‎\left(k^{5}\right)^{3}+1^{3}. סכום החזקות יכול להיות מפורק לגורמים באמצעות הכלל: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
שקול את k^{5}+1. לפי משפט השורש הרציונלי, כל השורשים הרציונליים של פולינום הם בצורה \frac{p}{q}, כאשר p מחלק את האיבר הקבוע 1 ו- q מחלק את המקדם המוביל 1. שורש אפשרי אחד הוא -1. פרק את הפולינום לגורמים על-ידי חלוקתו ב- k+1.
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
שכתב את הביטוי המפורק לגורמים המלא. הפולינומים הבאים אינם מפורקים לגורמים מאחר שאין להם שורשים רציונליים: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1.