דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x\left(-2x+3\right)
הוצא את הגורם המשותף x.
-2x^{2}+3x=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-2\right)}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-3±3}{2\left(-2\right)}
הוצא את השורש הריבועי של 3^{2}.
x=\frac{-3±3}{-4}
הכפל את ‎2 ב- ‎-2.
x=\frac{0}{-4}
כעת פתור את המשוואה x=\frac{-3±3}{-4} כאשר ± כולל סימן חיבור. הוסף את ‎-3 ל- ‎3.
x=0
חלק את ‎0 ב- ‎-4.
x=-\frac{6}{-4}
כעת פתור את המשוואה x=\frac{-3±3}{-4} כאשר ± כולל סימן חיסור. החסר ‎3 מ- ‎-3.
x=\frac{3}{2}
צמצם את השבר ‎\frac{-6}{-4} לאיברים נמוכים יותר על-ידי ביטול 2.
-2x^{2}+3x=-2x\left(x-\frac{3}{2}\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎0 במקום x_{1} וב- ‎\frac{3}{2} במקום x_{2}.
-2x^{2}+3x=-2x\times \frac{-2x+3}{-2}
החסר את x מ- \frac{3}{2} על-ידי מציאת מכנה משותף והחסרת המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
-2x^{2}+3x=x\left(-2x+3\right)
בטל את הגורם המשותף הגדול ביותר ‎2 ב- ‎-2 ו- ‎-2.