דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

x\left(1-x\right)
הוצא את הגורם המשותף x.
-x^{2}+x=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-1±1}{2\left(-1\right)}
הוצא את השורש הריבועי של 1^{2}.
x=\frac{-1±1}{-2}
הכפל את ‎2 ב- ‎-1.
x=\frac{0}{-2}
כעת פתור את המשוואה x=\frac{-1±1}{-2} כאשר ± כולל סימן חיבור. הוסף את ‎-1 ל- ‎1.
x=0
חלק את ‎0 ב- ‎-2.
x=-\frac{2}{-2}
כעת פתור את המשוואה x=\frac{-1±1}{-2} כאשר ± כולל סימן חיסור. החסר ‎1 מ- ‎-1.
x=1
חלק את ‎-2 ב- ‎-2.
-x^{2}+x=-x\left(x-1\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎0 במקום x_{1} וב- ‎1 במקום x_{2}.