פרק לגורמים
\left(c-5\right)^{2}
הערך
\left(c-5\right)^{2}
שתף
הועתק ללוח
a+b=-10 ab=1\times 25=25
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- c^{2}+ac+bc+25. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-25 -5,-5
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 25.
-1-25=-26 -5-5=-10
חשב את הסכום של כל צמד.
a=-5 b=-5
הפתרון הוא הצמד שנותן את הסכום -10.
\left(c^{2}-5c\right)+\left(-5c+25\right)
שכתב את c^{2}-10c+25 כ- \left(c^{2}-5c\right)+\left(-5c+25\right).
c\left(c-5\right)-5\left(c-5\right)
הוצא את הגורם המשותף c בקבוצה הראשונה ואת -5 בקבוצה השניה.
\left(c-5\right)\left(c-5\right)
הוצא את האיבר המשותף c-5 באמצעות חוק הפילוג.
\left(c-5\right)^{2}
כתוב מחדש כריבוע בינומי.
factor(c^{2}-10c+25)
לטרינום זה יש צורה של ריבוע טרינומי, שייתכן כי הוכפל בגורם משותף. ניתן לפרק ריבועים טרינומיים לגורמים על-ידי מציאת השורשים הריבועיים של האיבר המוביל והאיבר הנגרר.
\sqrt{25}=5
מצא את השורש הריבועי של האיבר הנגרר, 25.
\left(c-5\right)^{2}
הריבוע הטרינומי הוא הריבוע של הבינום שהוא הסכום או ההפרש של השורשים הריבועיים של האיבר המוביל והאיבר הנגרר, כשהסימן נקבע לפי סימן האיבר האמצעי של הריבוע הטרינומי.
c^{2}-10c+25=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
c=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
-10 בריבוע.
c=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
הכפל את -4 ב- 25.
c=\frac{-\left(-10\right)±\sqrt{0}}{2}
הוסף את 100 ל- -100.
c=\frac{-\left(-10\right)±0}{2}
הוצא את השורש הריבועי של 0.
c=\frac{10±0}{2}
ההופכי של -10 הוא 10.
c^{2}-10c+25=\left(c-5\right)\left(c-5\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- 5 במקום x_{1} וב- 5 במקום x_{2}.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}