פתור עבור a
a=\sqrt{31}+1\approx 6.567764363
a=1-\sqrt{31}\approx -4.567764363
שתף
הועתק ללוח
a^{2}-2a-30=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-30\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -2 במקום b, וב- -30 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-30\right)}}{2}
-2 בריבוע.
a=\frac{-\left(-2\right)±\sqrt{4+120}}{2}
הכפל את -4 ב- -30.
a=\frac{-\left(-2\right)±\sqrt{124}}{2}
הוסף את 4 ל- 120.
a=\frac{-\left(-2\right)±2\sqrt{31}}{2}
הוצא את השורש הריבועי של 124.
a=\frac{2±2\sqrt{31}}{2}
ההופכי של -2 הוא 2.
a=\frac{2\sqrt{31}+2}{2}
כעת פתור את המשוואה a=\frac{2±2\sqrt{31}}{2} כאשר ± כולל סימן חיבור. הוסף את 2 ל- 2\sqrt{31}.
a=\sqrt{31}+1
חלק את 2+2\sqrt{31} ב- 2.
a=\frac{2-2\sqrt{31}}{2}
כעת פתור את המשוואה a=\frac{2±2\sqrt{31}}{2} כאשר ± כולל סימן חיסור. החסר 2\sqrt{31} מ- 2.
a=1-\sqrt{31}
חלק את 2-2\sqrt{31} ב- 2.
a=\sqrt{31}+1 a=1-\sqrt{31}
המשוואה נפתרה כעת.
a^{2}-2a-30=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
a^{2}-2a-30-\left(-30\right)=-\left(-30\right)
הוסף 30 לשני אגפי המשוואה.
a^{2}-2a=-\left(-30\right)
החסרת -30 מעצמו נותנת 0.
a^{2}-2a=30
החסר -30 מ- 0.
a^{2}-2a+1=30+1
חלק את -2, המקדם של האיבר x, ב- 2 כדי לקבל -1. לאחר מכן הוסף את הריבוע של -1 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
a^{2}-2a+1=31
הוסף את 30 ל- 1.
\left(a-1\right)^{2}=31
פרק a^{2}-2a+1 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{31}
הוצא את השורש הריבועי של שני אגפי המשוואה.
a-1=\sqrt{31} a-1=-\sqrt{31}
פשט.
a=\sqrt{31}+1 a=1-\sqrt{31}
הוסף 1 לשני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}