דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-5 ab=2\left(-3\right)=-6
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- 2x^{2}+ax+bx-3. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-6 2,-3
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -6.
1-6=-5 2-3=-1
חשב את הסכום של כל צמד.
a=-6 b=1
הפתרון הוא הצמד שנותן את הסכום -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
שכתב את ‎2x^{2}-5x-3 כ- ‎\left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
הוצא את הגורם המשותף 2x ב- 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
הוצא את האיבר המשותף x-3 באמצעות חוק הפילוג.
2x^{2}-5x-3=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
‎-5 בריבוע.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
הכפל את ‎-4 ב- ‎2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
הכפל את ‎-8 ב- ‎-3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
הוסף את ‎25 ל- ‎24.
x=\frac{-\left(-5\right)±7}{2\times 2}
הוצא את השורש הריבועי של 49.
x=\frac{5±7}{2\times 2}
ההופכי של ‎-5 הוא ‎5.
x=\frac{5±7}{4}
הכפל את ‎2 ב- ‎2.
x=\frac{12}{4}
כעת פתור את המשוואה x=\frac{5±7}{4} כאשר ± כולל סימן חיבור. הוסף את ‎5 ל- ‎7.
x=3
חלק את ‎12 ב- ‎4.
x=-\frac{2}{4}
כעת פתור את המשוואה x=\frac{5±7}{4} כאשר ± כולל סימן חיסור. החסר ‎7 מ- ‎5.
x=-\frac{1}{2}
צמצם את השבר ‎\frac{-2}{4} לאיברים נמוכים יותר על-ידי ביטול 2.
2x^{2}-5x-3=2\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎3 במקום x_{1} וב- ‎-\frac{1}{2} במקום x_{2}.
2x^{2}-5x-3=2\left(x-3\right)\left(x+\frac{1}{2}\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.
2x^{2}-5x-3=2\left(x-3\right)\times \frac{2x+1}{2}
הוסף את ‎\frac{1}{2} ל- ‎x על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
2x^{2}-5x-3=\left(x-3\right)\left(2x+1\right)
בטל את הגורם המשותף הגדול ביותר ‎2 ב- ‎2 ו- ‎2.