פתור עבור c
\left\{\begin{matrix}c=\frac{E}{3\left(2\Delta +\lambda \right)}\text{, }&\lambda \neq -2\Delta \\c\in \mathrm{R}\text{, }&E=0\text{ and }\lambda =-2\Delta \end{matrix}\right.
פתור עבור E
E=3c\left(2\Delta +\lambda \right)
שתף
הועתק ללוח
E=3\lambda c+6\Delta c
השתמש בחוק הפילוג כדי להכפיל את 3 ב- \lambda c+2\Delta c.
3\lambda c+6\Delta c=E
החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
\left(3\lambda +6\Delta \right)c=E
כנס את כל האיברים המכילים c.
\left(6\Delta +3\lambda \right)c=E
המשוואה היא בעלת צורה סטנדרטית.
\frac{\left(6\Delta +3\lambda \right)c}{6\Delta +3\lambda }=\frac{E}{6\Delta +3\lambda }
חלק את שני האגפים ב- 3\lambda +6\Delta .
c=\frac{E}{6\Delta +3\lambda }
חילוק ב- 3\lambda +6\Delta מבטל את ההכפלה ב- 3\lambda +6\Delta .
c=\frac{E}{3\left(2\Delta +\lambda \right)}
חלק את E ב- 3\lambda +6\Delta .
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}