פתור עבור x
x=-\frac{1}{3}\approx -0.333333333
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
גרף
שתף
הועתק ללוח
a+b=-7 ab=6\left(-3\right)=-18
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- 6x^{2}+ax+bx-3. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-18 2,-9 3,-6
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -18.
1-18=-17 2-9=-7 3-6=-3
חשב את הסכום של כל צמד.
a=-9 b=2
הפתרון הוא הצמד שנותן את הסכום -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
שכתב את 6x^{2}-7x-3 כ- \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
הוצא את הגורם המשותף 3x ב- 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
הוצא את האיבר המשותף 2x-3 באמצעות חוק הפילוג.
x=\frac{3}{2} x=-\frac{1}{3}
כדי למצוא פתרונות משוואה, פתור את 2x-3=0 ו- 3x+1=0.
6x^{2}-7x-3=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 6 במקום a, ב- -7 במקום b, וב- -3 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
-7 בריבוע.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
הכפל את -4 ב- 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
הכפל את -24 ב- -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
הוסף את 49 ל- 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
הוצא את השורש הריבועי של 121.
x=\frac{7±11}{2\times 6}
ההופכי של -7 הוא 7.
x=\frac{7±11}{12}
הכפל את 2 ב- 6.
x=\frac{18}{12}
כעת פתור את המשוואה x=\frac{7±11}{12} כאשר ± כולל סימן חיבור. הוסף את 7 ל- 11.
x=\frac{3}{2}
צמצם את השבר \frac{18}{12} לאיברים נמוכים יותר על-ידי ביטול 6.
x=-\frac{4}{12}
כעת פתור את המשוואה x=\frac{7±11}{12} כאשר ± כולל סימן חיסור. החסר 11 מ- 7.
x=-\frac{1}{3}
צמצם את השבר \frac{-4}{12} לאיברים נמוכים יותר על-ידי ביטול 4.
x=\frac{3}{2} x=-\frac{1}{3}
המשוואה נפתרה כעת.
6x^{2}-7x-3=0
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
6x^{2}-7x-3-\left(-3\right)=-\left(-3\right)
הוסף 3 לשני אגפי המשוואה.
6x^{2}-7x=-\left(-3\right)
החסרת -3 מעצמו נותנת 0.
6x^{2}-7x=3
החסר -3 מ- 0.
\frac{6x^{2}-7x}{6}=\frac{3}{6}
חלק את שני האגפים ב- 6.
x^{2}-\frac{7}{6}x=\frac{3}{6}
חילוק ב- 6 מבטל את ההכפלה ב- 6.
x^{2}-\frac{7}{6}x=\frac{1}{2}
צמצם את השבר \frac{3}{6} לאיברים נמוכים יותר על-ידי ביטול 3.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(-\frac{7}{12}\right)^{2}
חלק את -\frac{7}{6}, המקדם של האיבר x, ב- 2 כדי לקבל -\frac{7}{12}. לאחר מכן הוסף את הריבוע של -\frac{7}{12} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
העלה את -\frac{7}{12} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
הוסף את \frac{1}{2} ל- \frac{49}{144} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x-\frac{7}{12}\right)^{2}=\frac{121}{144}
פרק x^{2}-\frac{7}{6}x+\frac{49}{144} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{7}{12}=\frac{11}{12} x-\frac{7}{12}=-\frac{11}{12}
פשט.
x=\frac{3}{2} x=-\frac{1}{3}
הוסף \frac{7}{12} לשני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}