פרק לגורמים
2\left(x-2\right)\left(3x-2\right)
הערך
2\left(x-2\right)\left(3x-2\right)
גרף
שתף
הועתק ללוח
2\left(3x^{2}-8x+4\right)
הוצא את הגורם המשותף 2.
a+b=-8 ab=3\times 4=12
שקול את 3x^{2}-8x+4. פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- 3x^{2}+ax+bx+4. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,-12 -2,-6 -3,-4
מאחר ש- ab הוא חיובי, ל- a ול- b יש אותו סימן. מאחר ש- a+b הוא שלילי, a ו- b שניהם שליליים. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה 12.
-1-12=-13 -2-6=-8 -3-4=-7
חשב את הסכום של כל צמד.
a=-6 b=-2
הפתרון הוא הצמד שנותן את הסכום -8.
\left(3x^{2}-6x\right)+\left(-2x+4\right)
שכתב את 3x^{2}-8x+4 כ- \left(3x^{2}-6x\right)+\left(-2x+4\right).
3x\left(x-2\right)-2\left(x-2\right)
הוצא את הגורם המשותף 3x בקבוצה הראשונה ואת -2 בקבוצה השניה.
\left(x-2\right)\left(3x-2\right)
הוצא את האיבר המשותף x-2 באמצעות חוק הפילוג.
2\left(x-2\right)\left(3x-2\right)
שכתב את הביטוי המפורק לגורמים המלא.
6x^{2}-16x+8=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 6\times 8}}{2\times 6}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 6\times 8}}{2\times 6}
-16 בריבוע.
x=\frac{-\left(-16\right)±\sqrt{256-24\times 8}}{2\times 6}
הכפל את -4 ב- 6.
x=\frac{-\left(-16\right)±\sqrt{256-192}}{2\times 6}
הכפל את -24 ב- 8.
x=\frac{-\left(-16\right)±\sqrt{64}}{2\times 6}
הוסף את 256 ל- -192.
x=\frac{-\left(-16\right)±8}{2\times 6}
הוצא את השורש הריבועי של 64.
x=\frac{16±8}{2\times 6}
ההופכי של -16 הוא 16.
x=\frac{16±8}{12}
הכפל את 2 ב- 6.
x=\frac{24}{12}
כעת פתור את המשוואה x=\frac{16±8}{12} כאשר ± כולל סימן חיבור. הוסף את 16 ל- 8.
x=2
חלק את 24 ב- 12.
x=\frac{8}{12}
כעת פתור את המשוואה x=\frac{16±8}{12} כאשר ± כולל סימן חיסור. החסר 8 מ- 16.
x=\frac{2}{3}
צמצם את השבר \frac{8}{12} לאיברים נמוכים יותר על-ידי ביטול 4.
6x^{2}-16x+8=6\left(x-2\right)\left(x-\frac{2}{3}\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- 2 במקום x_{1} וב- \frac{2}{3} במקום x_{2}.
6x^{2}-16x+8=6\left(x-2\right)\times \frac{3x-2}{3}
החסר את x מ- \frac{2}{3} על-ידי מציאת מכנה משותף והחסרת המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
6x^{2}-16x+8=2\left(x-2\right)\left(3x-2\right)
בטל את הגורם המשותף הגדול ביותר 3 ב- 6 ו- 3.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}