פרק לגורמים
\left(5x-4\right)\left(x+2\right)
הערך
\left(5x-4\right)\left(x+2\right)
גרף
שתף
הועתק ללוח
a+b=6 ab=5\left(-8\right)=-40
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- 5x^{2}+ax+bx-8. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
-1,40 -2,20 -4,10 -5,8
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא חיובי, למספר החיובי יש ערך מוחלט גדול יותר מהשלילי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
חשב את הסכום של כל צמד.
a=-4 b=10
הפתרון הוא הצמד שנותן את הסכום 6.
\left(5x^{2}-4x\right)+\left(10x-8\right)
שכתב את 5x^{2}+6x-8 כ- \left(5x^{2}-4x\right)+\left(10x-8\right).
x\left(5x-4\right)+2\left(5x-4\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 2 בקבוצה השניה.
\left(5x-4\right)\left(x+2\right)
הוצא את האיבר המשותף 5x-4 באמצעות חוק הפילוג.
5x^{2}+6x-8=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-8\right)}}{2\times 5}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-6±\sqrt{36-4\times 5\left(-8\right)}}{2\times 5}
6 בריבוע.
x=\frac{-6±\sqrt{36-20\left(-8\right)}}{2\times 5}
הכפל את -4 ב- 5.
x=\frac{-6±\sqrt{36+160}}{2\times 5}
הכפל את -20 ב- -8.
x=\frac{-6±\sqrt{196}}{2\times 5}
הוסף את 36 ל- 160.
x=\frac{-6±14}{2\times 5}
הוצא את השורש הריבועי של 196.
x=\frac{-6±14}{10}
הכפל את 2 ב- 5.
x=\frac{8}{10}
כעת פתור את המשוואה x=\frac{-6±14}{10} כאשר ± כולל סימן חיבור. הוסף את -6 ל- 14.
x=\frac{4}{5}
צמצם את השבר \frac{8}{10} לאיברים נמוכים יותר על-ידי ביטול 2.
x=-\frac{20}{10}
כעת פתור את המשוואה x=\frac{-6±14}{10} כאשר ± כולל סימן חיסור. החסר 14 מ- -6.
x=-2
חלק את -20 ב- 10.
5x^{2}+6x-8=5\left(x-\frac{4}{5}\right)\left(x-\left(-2\right)\right)
פרק את הביטוי המקורי לגורמים באמצעות ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). השתמש ב- \frac{4}{5} במקום x_{1} וב- -2 במקום x_{2}.
5x^{2}+6x-8=5\left(x-\frac{4}{5}\right)\left(x+2\right)
פשט את כל הביטויים של הצורה p-\left(-q\right) ל- p+q.
5x^{2}+6x-8=5\times \frac{5x-4}{5}\left(x+2\right)
החסר את x מ- \frac{4}{5} על-ידי מציאת מכנה משותף והחסרת המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
5x^{2}+6x-8=\left(5x-4\right)\left(x+2\right)
בטל את הגורם המשותף הגדול ביותר 5 ב- 5 ו- 5.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}