דילוג לתוכן העיקרי
פתור עבור x, y
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

3x+5y=8,x-2y=-1
כדי לפתור זוג משוואות באמצעות החלפה, תחילה פתור אחת מהמשוואות עבור אחד מהמשתנים. לאחר מכן החלף את התוצאה עבור משתנה זה במשוואה השניה.
3x+5y=8
בחר אחת מהמשוואות ופתור אותה עבור x על-ידי בידוד x בצד השמאלי של סימן השוויון.
3x=-5y+8
החסר ‎5y משני אגפי המשוואה.
x=\frac{1}{3}\left(-5y+8\right)
חלק את שני האגפים ב- ‎3.
x=-\frac{5}{3}y+\frac{8}{3}
הכפל את ‎\frac{1}{3} ב- ‎-5y+8.
-\frac{5}{3}y+\frac{8}{3}-2y=-1
השתמש ב- ‎\frac{-5y+8}{3} במקום ‎x במשוואה השניה, ‎x-2y=-1.
-\frac{11}{3}y+\frac{8}{3}=-1
הוסף את ‎-\frac{5y}{3} ל- ‎-2y.
-\frac{11}{3}y=-\frac{11}{3}
החסר ‎\frac{8}{3} משני אגפי המשוואה.
y=1
חלק את שני אגפי המשוואה ב- ‎-\frac{11}{3}, פעולה הזהה להכפלת שני האגפים בהופכי של השבר.
x=\frac{-5+8}{3}
השתמש ב- ‎1 במקום y ב- ‎x=-\frac{5}{3}y+\frac{8}{3}. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף את ‎\frac{8}{3} ל- ‎-\frac{5}{3} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
x=1,y=1
המערכת נפתרה כעת.
3x+5y=8,x-2y=-1
העבר את המשוואות לצורה סטנדרטית ולאחר מכן השתמש במטריצות כדי לפתור את מערכת המשוואות.
\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
כתוב את המשוואות בצורת מטריצה.
inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}3&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
הכפל את המשוואה שבצד השמאלי במטריצה ההופכית של \left(\begin{matrix}3&5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
המכפלה של מטריצה וההופכי שלה היא מטריצת הזהות.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
הכפל את המטריצות בצד השמאלי של סימן השוויון.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-5}&-\frac{5}{3\left(-2\right)-5}\\-\frac{1}{3\left(-2\right)-5}&\frac{3}{3\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
עבור המטריצה 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), המטריצה ההפוכה היא \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), כדי שניתן יהיה לכתוב מחדש את משוואת המטריצה כבעיית הכפלת מטריצה.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 8+\frac{5}{11}\left(-1\right)\\\frac{1}{11}\times 8-\frac{3}{11}\left(-1\right)\end{matrix}\right)
הכפל את המטריצות.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
בצע את הפעולות האריתמטיות.
x=1,y=1
חלץ את רכיבי המטריצה x ו- y.
3x+5y=8,x-2y=-1
כדי לפתור באמצעות אלימינציה, המקדמים של אחד מהמשתנים חייבים להיות זהים בשתי המשוואות כדי שהמשתנה יתבטל בעת החסרת משוואה אחת מהשניה.
3x+5y=8,3x+3\left(-2\right)y=3\left(-1\right)
כדי להפוך את ‎3x ו- ‎x לשווים, הכפל את כל האיברים בכל אגף של המשוואה הראשונה ב- ‎1 ואת כל האיברים בכל אגף של המשוואה השניה ב- ‎3.
3x+5y=8,3x-6y=-3
פשט.
3x-3x+5y+6y=8+3
החסר את ‎3x-6y=-3 מ- ‎3x+5y=8 על-ידי חיסור איברים דומים בכל אחד מהצדדים של סימן השוויון.
5y+6y=8+3
הוסף את ‎3x ל- ‎-3x. האיברים ‎3x ו- ‎-3x מבטלים זה את זה, ונותרת משוואה שכוללת משתנה אחד בלבד ושניתן לפתור אותה.
11y=8+3
הוסף את ‎5y ל- ‎6y.
11y=11
הוסף את ‎8 ל- ‎3.
y=1
חלק את שני האגפים ב- ‎11.
x-2=-1
השתמש ב- ‎1 במקום y ב- ‎x-2y=-1. מאחר שהמשוואה המתקבלת מכילה משתנה אחד בלבד, ניתן לפתור את x ישירות.
x=1
הוסף ‎2 לשני אגפי המשוואה.
x=1,y=1
המערכת נפתרה כעת.